逻辑斯蒂曲线的几个推广模型与应用.docx
文本预览下载声明
第 12 卷第 3 期运筹与管理Vol. 12 ,No. 3 2003 年 6 月OPERA TIONS RESEARCH AND MANA GEMEN T SCIENCEJ un. ,2003逻辑斯蒂曲线的几个推广模型与应用程毛林(苏州科技大学 应用数学系 ,江苏 苏州 215011)摘 要 :本文给出逻辑斯蒂曲线的三个推广模型 ,即广义逻辑斯蒂曲线模型 、含季节性变化的逻辑斯蒂曲线模 型 、合成逻辑斯蒂曲线模型及其模型参数估计的方法 ,并对我国汽车生产量作出了很好的预测 。关键词 :逻辑斯蒂曲线 ;参数估计 ;模型 ;预测中图分类号 :N945112文章标识码 :A文章编号 :100723221 (2003) 0320085204Extension and Application of Logistic CurveCHEN G Mao2lin( S uz hou Science and Technology U niversity , S uz hou 215011 , China)Abstract : This paper gives three extension models of logistic curve , that is the general logistic curve ,contain2 ing season logistic curve and composite logistic curve ,and also the method of model parameter estimation. Fi2 nally ,t he car output of our country is well forecasted by the model mentioned.Key words :logistic curve ;parameter estimation ; model ;forecast0引言在生长理论曲线中 ,最著名的是逻辑斯蒂曲线 ,它最初是在研究人口增殖规律时提出来的 ,后来 ,比利 时数学家 Verhulst 将其归纳提炼成数学模型 ,此曲线表明 ,某研究变量 ( y) 在开始阶段增长速度随时间 ( t) 的增加而增加 , 经过发展的生长期后 , y 值增长速度逐渐减慢 , 并且逐渐地逼近于一定的极限值 ( L ) 。 大量研究表明 , 在自然界 , 动植物的增长 , 在经济界 , 生产总值的增长 、耐用消费品的销售等都符合用逻辑 斯蒂曲线来描述 。逻辑斯蒂曲线在预测与决策上有独特的表现 , 正因如此 , 逻辑斯蒂曲线使用广泛 。但逻 辑斯蒂曲线对有些现象发展过程的适应性不足 , 这些现象表现为数据在时间变化过程中除基本符合生长 曲线增长趋势外 , 还表现为数据的季节性变化 , 阶段过程的变化等 , 所以 , 本文就这些问题 , 给出逻辑斯蒂 曲线的另外三个推广模型 , 即广义逻辑斯蒂曲线模型 、含季节性变化的逻辑斯蒂曲线模型 、合成逻辑斯蒂 曲线模型 。并对我国发展中的汽车生产量作出预测 。1逻辑斯蒂曲线模型逻辑斯蒂曲线在满足生长曲线规律的现象中使用最为广泛 , 对饱和增长趋势变化时间序列常使用逻 辑斯蒂曲线模型 。逻辑斯蒂曲线描述的数据结构模型为 : L yi =1 + ae - bti+εii = 1 , 2 ,, n(1)收稿日期 :2002211208作者简介 :程毛林(19652) ,男 ,安徽桐城人 ,苏州科技大学副教授。 86运筹与管理2003 年第 12 卷这里的 L 、a 、b 为未知参数 , 其中 L 为 y 的极限参数即饱和值 , b 为增长速度因子 , t i 为不含误差的 确定性时间变量 ,εi 为随机误差变量 , 并且 , 误差εi 满足 :E (εi) = 0 , V (εi) =σ2 , Cov (ε ,ε) = 0 , ( i ≠j)(2)iijE (εi ) 为εi 的期望值 , V (εi) 为εi 的方差 。一般情况下 , 假定 σ2 =σ2 (一定) 。Cov (ε ,ε) = 0 , 表示观iij测误差间没有相关关系 , 也就是误差的变动完全是偶然的 。逻辑斯蒂曲线的拐点为 l n a , k, 曲线过此点由下凹变成上凸 , 表明在拐点前曲线增长率逐渐变大 ,b2拐点后增长率逐渐变小 , 最后达到饱和状态 。i逻辑斯蒂曲线 (1) 式参数 L 、a 、b 的估计方法较多 , 通常利用泰勒公式将模型线性化 , 在假定 σ2 = σ2 (一定) 下 , 可用普通最小二乘法 。但这样估计因模型线性化时 , 忽略余项 , 估计误差较大 。利用非线性最 小二乘法 (无约束优化) 估计参数 ,
显示全部