浅谈高中数学解题的规范性解题策略.doc
文本预览下载声明
浅谈高中数学解题的规范性解题策略
高中数学解题的规范性解题策略,知识上的错误纠正更简单,而解题规范性的养成往往难很多.
学数学最直接的表现就是要做数学题. 做题是巩固知识、运用知识解决问题提高能力的重要途径,也是检测学生学习效果的主要手段. 但在平时的教学中,常常听到学生抱怨,拿到一道题知道答案是什么,但就是不知道怎样把自己所想的用数学语言写下来. 批改作业时不难发现一种现象,只要解题结果正确,学生会绝对轻视甚至忽略作业中出现的不规范性问题,殊不知,知识上的错误纠正更简单,而解题规范性的养成往往难很多.
在数学学习过程中做题是必不可少的,但并非越多越好,题海战术只能加重学生的负担. 要想少做题却有效果,就必须养成解题的规范性,规范的解题能够使学生养成良好的学习习惯,提高思维水平,提升学习成绩.
通过对几届学生的分析,笔者发现学生主要有以下几类不规范的解题行为.
■问题一:读题不仔细,审题错误
怎样才能审好题呢?笔者认为学生首先要把题目中每一个条件及条件之间的关系弄清楚,再根据条件逐一联想所学知识、方法、类似的题目及注意点. 这样才能发现题目中条件最集中的地方、条件相关的地方以及可以转化的地方,从而逐步入题,找到题目的关键点、突破口. 因此,联系所学知识对审题很重要. 通过有意识地联系与题目相关的知识、方法进而深入理解题目的本质,为下一步的展开做好准备.
如:若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,求m的取值范围. 解析中由三角形三内角的度数成等差数列,可以立即得到ang;B的度数,ang;B=60deg;.设三角形的三个内角为A,B,C,A为钝角,则Agt;Bgt;C.设角A,B,C的对边依次为a,b,c,则m=■=■,但是如何判断m的取值范围呢?注意到,这里有一个隐含条件,即ang;B=60deg;,ang;Agt;90deg;,则ang;Clt;30deg;. 于是m=■=■gt;■gt;2sinA.若使mgt;2sinA对所有钝角A恒成立,只需mgt;(2sinA)max=2.
■问题二:缺少衔接性语言,解题枯燥无味
这实际上是生活数学化的能力和学科综合的能力不具备的表现,这也是很多数学教师不屑一顾甚至反对的一点,更不用说学生了. 所谓“衔接性语言”是指实际问题转化为数学问题的过程语言,在解题过程中上下句之间的逻辑连接语言,最常见的有因为、所以,但高中学生尤其是高一学生对此最容易忽视. 如:在△ABC中,ang;B=30deg;,AB=2■,AC=2,求△ABC的面积. 在求解过程中,有学生会不写下面括号内的文字,只有一些数学符号,如:(根据正弦定理知)■=■,(即)■=■,得sinC=■. (由于ABsin30deg; ■问题三:解题缺乏计划性
学生中比较普遍存在的情况是:解题就像脚踩西瓜皮,滑到哪里算哪里. 尤其在解与三角有关的化简和证明题时,拿起一个三角公式就代,至于用公式的目的是什么,为了达到怎样的目标,是否与要解决的问题更接近了,类似于这样的思考在他们的解题过程中是从未有过的. 导致的后果就是一堆公式代下来,做对了也不知道为什么会对,做错了更是不知错在哪里. 其实,解题的过程是充满思考的过程. 没有人能保证自己的解题思路一直是正确的. 学生应该要学会根据已有的演算和推理结论去制定和调整下一步的解题计划. 这对于提高解题正确率意义重大.
■问题四:解题后不检验
很多学生都认为一道题只要算出结果,这道题就做好了. 事实上正是因为有这样的想法使得不少学生在解题上功亏一篑. 在数学推演的过程中经常会出现这样一种情况:前一步和后一步之间并非是充分必要的,也就是我们常说的不等价. 这种时候就需要对解题的结果进行检验. 在解一些探索性的问题时,有时候我们往往先假设某个情况是存在的,然后通过一些特殊条件去待定未知数. 这就需要检验解题结果,因为这个结果是在“假设存在”的前提条件下推导出的. 至于是否真的存在还需要验证.
就上面这些会出现的问题,你如果去问学生们,他们会说:我太粗心了!但事实是,真的是因为他们太粗心吗?笔者对导致学生解题不规范的原因做了分析,主要有以下几方面.
一是初高中教材体系差异产生学生解题不规范. 初中数学教材中每一个新知识的引入往往与学生日常生活实际很贴近,比较形象,难度、深度和广度大大降低了,教材内容通俗具体,多为常量、数字,题型少而简单,体现了“浅、少、易”的特点,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握.
显示全部