文档详情

高考数学易错点:选择题.doc

发布:2017-06-16约9.68千字共13页下载文档
文本预览下载声明
高考数学必胜秘诀在哪? ――概念、方法、题型、易误点及应试技巧总结 十四、高考数学选择题的解题策略 数学选择题在当今高考试卷中,不但题目多,而且占分比例高,即使今年江苏试题的题量发生了一些变化,选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 (一)数学选择题的解题方法 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为                               (  ) 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 故选A。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直。其中正确命题的个数为( ) A.0 B.1 C.2 D.3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D。 例3、已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于( ) A.11 B.10 C.9 D.16 解析:由椭圆的定义可得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,两式相加后将|AB|=5=|AF2|+|BF2|代入,得|AF1|+|BF1|=11,故选A。 例4、已知在[0,1]上是的减函数,则a的取值范围是( ) A.(0,1)   B.(1,2)   C.(0,2) D.[2,+∞) 解析:∵a0,∴y1=2-ax是减函数,∵ 在[0,1]上是减函数。 ∴a1,且2-a0,∴1a2,故选B。 2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。 (1)特殊值 例5、若sinαtanαcotα(),则α∈( ) A.(,) B.(,0)  C.(0,) D.(,) 解析:因,取α=-代入sinαtanαcotα,满足条件式,则排除A、C、D,故选B。 例6、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为( ) A.-24 B.84 C.72 D.36 解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12a3=a1+2d= -243n项和为36,故选D。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5 解析:构造特殊函数f(x)=x,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C。 例8、定义在R上的奇函数f(x)为减函数,设a+b≤0,给出下列不等式:①f(a)·f(-a)0;②f(b)·f(-b)0;③f(a)+f(b)≤f(-a)+f(-b)f(a)+f(b)≥f(-a)+f(-b)f(x)= -x (3)特殊数列 例9、已知等差数列满足,则有       (   ) A、  B、
显示全部
相似文档