2024届江苏省苏州市吴江汾湖中学高考冲刺押题(最后一卷)数学试卷含解析.doc
2024届江苏省苏州市吴江汾湖中学高考冲刺押题(最后一卷)数学试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()
A. B. C. D.
2.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()
A.平均数为20,方差为4 B.平均数为11,方差为4
C.平均数为21,方差为8 D.平均数为20,方差为8
3.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()
A. B. C. D.
4.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()
A. B. C. D.
5.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()
A.b>c>a B.c>b>a C.a>b>c D.b>a>c
6.若的展开式中的系数之和为,则实数的值为()
A. B. C. D.1
7.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()
A. B. C. D.
8.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()
A. B.
C. D.
9.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()
A. B. C. D.
10.若θ是第二象限角且sinθ=,则=
A. B. C. D.
11.在中,角的对边分别为,若.则角的大小为()
A. B. C. D.
12.已知复数z=2i1-i,则
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题:本题共4小题,每小题5分,共20分。
13.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则?_____,△ABC的面积为_____.
14.已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,,的内切圆的圆心的纵坐标为,则双曲线的离心率为________.
15.函数在区间(-∞,1)上递增,则实数a的取值范围是____
16.在中,已知,,是边的垂直平分线上的一点,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)证明;AC⊥BP;
(Ⅱ)求直线AD与平面APC所成角的正弦值.
18.(12分)已知椭圆()的离心率为,且经过点.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.
19.(12分)已知函数,其中.
(1)①求函数的单调区间;
②若满足,且.求证:.
(2)函数.若对任意,都有,求的最大值.
20.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:
年份
2011
2012
2013
2014
2015
2016
2017
2018
年生产台数(万台)
2
3
4
5
6
7
10
11
该产品的年利润(百万元)
2.1
2.75
3.5
3.25
3
4.9
6
6.5
年返修台数(台)
21
22
28
65
80
65
84
88
部分计算结果:,,,
,
注:年返修率=
(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中,,.
21.(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.
其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户