文档详情

代数重点难点小结.doc

发布:2017-04-25约3.15千字共5页下载文档
文本预览下载声明
名思教育-----我的成功不是偶然! 海到无边天作岸,山高绝顶我为峰 名思教育个性化拓展练习 代数重点难点总结方程(组) 一、 基本概念 1.方程、方程的解(根)、方程组的解、解方程(组) 二、 一元二次方程 1.定义及一般形式: 2.解法:⑴直接开平方法(注意特征) ⑵配方法(注意步骤—推倒求根公式) ⑶公式法: ⑷因式分解法(特征:左边=0) 3.根的判别式: 4.根与系数的关系(韦达定理):+=, = 逆定理:若 ,则以 ,为根的一元二次方程是:a(x-)(x-)=0。 5.常用等式: 三、 可化为一元二次方程的方程 1.分式方程 ⑴定义 ⑵基本思想: 去分母 ⑶基本解法:①去分母法②换元法(如, ) ⑷验根及方法 2.无理方程 ⑴定义 ⑵基本思想: 分母有理化 ⑶基本解法:①乘方法(注意技巧!!)②换元法(例, ) ⑷验根及方法 3.简单的二元二次方程组 由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。 四、 列方程解应用题 一概述 列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 ⑶用含未知数的代数式表示相关的量。 ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 ⑸解方程及检验。 ⑹答案。 综上所述,列方程解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 函数及其图象 ★重难点★二次函数的图象和性质。 一、平面???角坐标系 1.各象限内点的坐标的特点 2.坐标轴上点的坐标的特点 3.关于坐标轴、原点对称的点的坐标的特点 4.坐标平面内点与有序实数对的对应关系 二、函数 1.表示方法:⑴解析法;⑵列表法;⑶图象法。 2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有 意义。 3.画函数图象:⑴列表;⑵描点;⑶连线。 三、二次函数 (定义→图象→性质) ⑴定义: ⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a0时,开口向上;a0时,开口向下。 ⑶性质:a0时,在对称轴左侧…,右侧…;a0时,在对称轴左侧…,右侧…。 四、重要解题方法 1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。 2.利用图象二次函数中的k、b;a、b、c的符号。 解直角三角形 ★重难点★解直角三角形 一、三角函数 1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= . 2. 特殊角的三角函数值: 0° 30° 45° 60° 90° sinα 0 1 cosα 1 0 tgα / 1 3. 互余两角的三角函数关系:sin(90°-α)=cosα;… 4. 三角函数值随角度变化的关系 5.查三角函数表 二、解直角三角形 1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 2. 依据:①边的关系: ②角的关系:A+B=90° ③边角关系:三角函数的定义。 注意:尽量避免使用中间数据和除法。 三、对实际问题的处理 1. 俯、仰角: 2.方位角、象限角: 3.坡度:tgα 4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。 几何 四边形 ★重难点★相交线与平行线、三角形、四边形的有关概念、判定、性质。 分类表: 1.一般性质(角) ⑴内角和:360° ⑵顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。 ⑶外角和:360° 2.特殊四边形
显示全部
相似文档