如何提高功率电子模块的可靠性?.docx
文本预览下载声明
PAGE 1
PAGE 1
如何提高功率电子模块的可靠性?
在可预见的将来,功率电子组件的使用将持续不断的增加。任何需要电力变换、转换或掌握等功能都需使用各种形式的功率电子组件。如图1所示,功率电子组件广泛应用于各种不同的行业。红色圆圈所代表的是需要使用功率模块的行业,如汽车业(电动汽车、混合动力汽车、燃料电池汽车等其他轮式汽车)、可再生能源业(光伏逆变器、风力发电机、太阳能电站、卫星太阳能面板)、铁路设施(引擎组件、牵引掌握系统)、以及高端马达驱动器。这些功率电子组件一般由多种IGBT(绝缘栅双极晶体管)或功率MOSFET(金属氧化物半导体场效晶体管)组成。 图1 功率电子组件的应用。红色圆圈表示需使用大功率模块的行业。在大功率电子行业中,电动汽车、混合动力汽车及其充电站对功率电子组件的需求都有显着增长。(:法国市场调研机构YoleDeveloppement.) 牢靠性挑战 对于使用IGBT或功率MOSFET的用户而言,牢靠性是他们关注的首要议题。在这些行业中,产品的高牢靠性和长使用寿命尤其重要。用户期望电动车在连续15至20年内不消失任何重大修理问题,而铁路产业则需持续使用至少30年或更久。对于时常派遣修理人员对离岸风力发电机进行修理明显是不行行的,卫星太阳面板甚至需性的使用。热失效是高牢靠性无法实现的主要缘由。功率循环会使IGBT芯片端产生的热通过模块并散发到四周环境中,其产生的应力及热会破坏模块。焊线可能因疲惫老化的缘由而脱落或断裂,甚至进一步恶化导致完全失效。模块的封装内部层次,特殊是芯片焊接处会因热-结构应力的作用下而脱层并裂开。在完全失效前,这些模块本可承受上万、甚至数以百万的功率循环次数。 那么,我们如何保证这些模块在其应用领域中能持续使用多年并且耐受成千上万次功率循环呢?这不仅仅是功率电子模块供货商的责任,也是相关产业供货商都必需克服的难题,无论是初期零组件供货商,抑或是终产品的代工厂(O E M)都责无旁贷。若所生产的功率模块太早消失损坏的状况,则O E M厂应当为此负担保固、产品召回和声誉受损等损失。 功率模块的牢靠性测试并不是一项新的挑战,但传统的模块测试过程特别漫长且具有不精确?????性和不确定性(图3)。一般牢靠性的测试会将IGBT模块安装于设备上并供应规定的安培数进行功率循环的测试。组件在经过多次功率循环测试(500次、1000次、5000次等)之后,用户须将模块从设备上取下送往试验室进行检验,确认是否有故障。若没有故障则连续重复该循环测试直至模块终失效为止。此时模块将被再次送往试验室进行检查,借由X光探伤、超声波检测、光学检测或破坏性的解剖方式来确定故障的缘由。重复的功率循环测试和试验室检验特别耗时且无法在测试过程中实时观看到失效的产生,只能在确定组件是否失效。而若因多种不同缘由所引起的失效则可能无法确定其准确的缘由。 图3 传统的IGBT模块牢靠性测试方法耗时、精确?????性低,无法在测试过程中实时观看到失效的产生,只能确定产品是否失效 新的牢靠性测试方法 我们需要一种更有效、快速确定失效缘由的测试方式。此方法要能在功率循环测试时量测模块中的电/热效应,并实时发觉失效缘由而不是依靠事后的诊断。为了满意以上的需求,唯有将功率循环和测试整合于同一设备中才能实现,使用户无须将模块从功率循环测试设备上取出送往试验室进行失效分析。Men tor Graphic s新推出的MicReD Industrial Power Tester 1500A就能供应这样的测试环境。图4是功率测试设备进行功率循环和实时测试/诊断的示意图。该测试设备利用MicRed T3Ster瞬时热特性技术对组件进行量测(如芯片封装、LED和系统)。主要特征有: 1) 采纳触控屏幕来掌握、定义模块的特性和测试挨次及方法。无论是、产品工程师或技术人员都能简洁的学习和使用。软件能存储相关的参数供重复使用,能用来测试多个在线的样本或产品质量牢靠性。 2) 1500A的电源可同时供应三个不同的模块进行测试,每个模块可单独使用的电流高达500A.电源切换的时间仅需不到100μs,这也是T3Ster设备在高精确?????性瞬时热特性测试中所要求的速度。 3) 循环测试时,用户可自行定义时间间隔来测试、记录模块的正向电压变化,其采样率高达到每秒100万个样本。这些数据都将显示在触控屏幕上并直接产生出“结构函数”。 4) 使用结构函数可实时分析模块各层结构,并发觉任何因失效所可能产生的变化(芯片或黏接层脱离、裂开等)。这些信息都能帮助确定失效产生的准确时间和缘由。 5) 平安
显示全部