全国中考真题解析120考点汇编☆二元一次方组的有关概念.doc
文本预览下载声明
(2012年1月最新最细)2011全国中考真题解析
120考点汇编☆二元一次方程组的有关概念
一、选择题
1.下列方程组中是二元一次方程组的是( )
A. B. C. D.
考点:二元一次方程组的定义.
分析:组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.
解答:解:A、第一个方程值的xy是二次的,故此选项错误;B、第二个方程有,不是整式方程,故此选项错误;C、含有3个未知数,故此选项错误;D、符合二元一次方程定义,故此选项正确.故选D.
点评:此题主要考查了二元一次方程的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.2. 下列方程组中是二元一次方程组的是( )
A. B. C. D.
考点:二元一次方程组的定义.
分析:组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.
解答:解:A、第一个方程值的xy是二次的,故此选项错误;B、第二个方程有,不是整式方程,故此选项错误;C、含有3个未知数,故此选项错误;D、符合二元一次方程定义,故此选项正确.故选D.
点评:此题主要考查了二元一次方程的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.
3. (2011河北)已知是关于x,y的二元一次方程的解,求(a+1)(a-1)+7的值.
考点:二次根式的混合运算;二元一次方程的解。
专题:计算题。
分析:根据已知是关于x,y的二元一次方程的解,代入方程即可得出a的值,再利用二次根式的运算性质求出.
解答:解:∵是关于x,y的二元一次方程的解,
∴2=+a,
a=,
∴(a+1)(a-1)+7=a2-1+7=3-1+7=9.
点评:此题主要考查了二次根式的混合运算以及二元一次方程的解,根据题意得出a的值是解决问题的关键.
4. (2011湖南益阳,2,4分)二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是( )
A. B.
C. D.
考点:二元一次方程的解.
专题:计算题.
分析:将x.y的值分别代入x﹣2y中,看结果是否等于1,判断x.y的值是否为方程x﹣2y=1的解.
解答:解:A.当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;
B.当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;
C.当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;
D.当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;
故选B.
点评:本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.
5.2011广东肇庆,4,3分)方程组的解是( )
A、 B、C、 D、
考点:解二元一次方程组。
专题:计算题。
分析:此题运用加减消元法解方程组,由①+②先求出x,再代入求出y.
解答:解:,
①+②得:
3x=6,
x=2,
把x=2代入①得:
y=0,
∴,
故选:D.
点评:此题考查的知识点是接二元一次方程组,关键是先用加减消元法求出x.二、填空题
1. (2011?柳州)把方程2x+y=3改写成用含x的式子表示y的形式,得y= 3﹣2x .
考点:解二元一次方程。
专题:计算题。
分析:本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1即可.
解答:解:把方程2x+y=3移项得:
y=3﹣2x,
故答案为:y=3﹣2x.
点评:此题考查的是方程的基本运算技能,移项,合并同类项,系数化为1等,然后合并同类项,系数化1就可用含x的式子表示y2. (2011湖南长沙,,3分)若是关于的二元一次方程的解,则的值为
A. B. C.2 D.7
代入方程ax-3y=1,得a-6=1,解得a=7,故选D.
解答:D
点评:本题主要考查二元一次方程组的解的意义与解一元一次方程知识,将x、y的值代入原一元一次方程,即可求出待定系数的值.
三、解答题
显示全部