文档详情

浙教版七年级数学下册各章知识点归纳汇总.doc

发布:2018-07-28约5.18千字共7页下载文档
文本预览下载声明
新浙教版七年级下册数学各章知识点 第一章:平行线与相交线 知识结构 要点诠释 两条直线的位置关系 (1)在同一平面内,两条直线的位置关系只有两种:相交与平行。(2)平行线:在同一平面内,不相交的两条直线交平行线。 几种特殊关系的角 (1)余角和补角:①定义:如果两个角的和是直角,称这两个角互为余角;如果两个角的和是平角,称这两个角互为补角。②性质:同角或等角的余角相等,同角或等角的补角相等。 (2)对顶角:①定义:两条直线相交所得有公共顶点、没有公共边的两个角②性质:对顶角相等。 (3)同位角、内错角、同旁内角 两条直线分别与第三条直线相交,构成八个角。 在两条直线同一侧并且在第三条直线的旁边的两个角叫同位角。 在两条直线之间并且在第三条直线的两旁的两个角叫做内错角。 在两条直线之间并且在第三条直线的同旁的两个角叫做同旁内角。 三、主要内容 (1)平行线的判定: 同位角相等,两直线平行; 内错角相等,两直线平行; 同旁内角相等,两直线平行; 平行于同一直线的两条直线平行; 垂直于同一条直线的两直线平行。 (2)平行线的性质 两直线平行,同位角相等; 两直线平行,内错角相等; 两直线平行,同旁内角互补; 经过直线外一点有且只有一条直线与已知直线平行。 第二章:二元一次方程组 2.1二元一次方程 含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。 使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。 2.2二元一次方程组 由两个二元一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。 同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。 2.3解二元一次方程组 ①消元就是把二元一次方程组化为一元一次方程。消元的方法是代入,这种解方程组的方法称为代入消元法,简称代入法。 用代入消元法解二元一次方程组的一般步骤是: 1.将方程组中的一个方程变形,使得一个未知数能用含有另一个未知数的代数式表示; 2.用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求出一个未知数的值; 3.把这个未知数的值代入代数式,求另一个未知数的值; 4.写出方程组的解。 ②对于二元一次方程组,当两个方程组的同一个未知数的系数相同或是互为相反数时,可以通过把两个方程的两边进行相加或相减来消元,转化为一元一次方程求解。 通过将两个方程的两边进行相加或相减,消去其中一个未知数转化为一元一次方程。这种解二元一次方程组的方法叫做加减消元法,简称加减法。 用加减法解二元一次方程组的一般步骤是: 1.将其中一个未知数的系数转化为相同(或互为相反数); 2.通过相加(或相减)消去这个未知数,得到一个一元一次方程; 3.解这个一元一次方程,得到这个未知数的值; 3.将求得得未知数的值代入原方程组中的任一个方程,求得另一个未知数的值; 4.写出方程组的解。 2.4二元一次方程组的应用 当问题中所求的未知数有两个时,用两个字母来表示未知数往往比较容易列出方程。 一般地,应用二元一次方程组解决实际问题的基本步骤为: 理解问题(审题,搞清已知和未知,分析数量关系) 制定计划(考虑如何根据等量关系设元,列出方程组) 执行计划(列出方程组并求解,得到答案) 回 顾(检查和反思解题过程,检验答案的正确性以及是否符合题意) 题目: 1.方程组的解是( ) A. 10.已知方程ax+by=10的两个解为,则a、b的值为( ) A. 2.如果是方程mx+ny=15的两个解,求m,n的值. 3.已知方程组有正整数解(a为整数),求a的值. 第三章:整式的乘除 3.1同底数幂的乘法 ①同底数幂的乘法法则:同底数幂相乘,指数相加。 ②幂的乘法法则:幂的乘方,底数不变,指数相乘。 ③积的乘法法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 3.2单项式的乘法 单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。 单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 3.3多项式的乘法 多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。 3.4乘法公式 ①平方差公式: 即 两数和与这两数差的积等于这两数的平方差。 ②两数和的完全平方公式: 即 两数和的平方,等于这两个数的平方和,加上这两数积的2倍。 两数差的完全平方公式: 即 两数差的平方,等于这两个数的平方差,减去这两数积的2倍。 上述两个公式统称完全平方公式。 3.5整式的化简 整式的化简应遵循先乘方、再乘除、最后算加减的顺序。能运用乘法
显示全部
相似文档