文档详情

数学专业英语第二版-课文翻译.pdf

发布:2018-10-21约1.16万字共5页下载文档
文本预览下载声明
2.4 整数、有理数与实数 4-A Integers and rational numbers There exist certain subsets of R which are distinguished because they have special properties not shared by all real numbers. In this section we shall discuss such subsets, the integers and the rational numbers. 有一些 R 的子集很著名,因为他们具有实数所不具备的特殊性质。在本节我们将讨论这 样的子集,整数集和有理数集。 To introduce the positive integers we begin with the number 1, whose existence is guaranteed by Axiom 4. The number 1+1 is denoted by 2, the number 2+1 by 3, and so on. The numbers 1,2,3,…, obtained in this way by repeated addition of 1 are all positive, and they are called the positive integers. 我们从数字 1 开始介绍正整数,公理 4 保证了 1 的存在性。1+1 用 2 表示,2+1 用 3 表 示,以此类推,由 1 重复累加的方式得到的数字 1,2,3,…都是正的,它们被叫做正整数。 Strictly speaking, this description of the positive integers is not entirely complete because we have not explained in detail what we mean by the expressions “and so on”, or “repeated addition of 1”. 严格地说,这种关于正整数的描述是不完整的,因为我们没有详细解释“等等”或者 “1 的重复累加”的含义。 Although the intuitive meaning of expressions may seem clear, in careful treatment of the real-number system it is necessary to give a more precise definition of the positive integers. There are many ways to do this. One convenient method is to introduce first the notion of an inductive set. 虽然这些说法的直观意思似乎是清楚的,但是在认真处理实数系统时必须给出一个更准 确的关于正整数的定义。 有很多种方式来给出这个定义,一个简便的方法是先引进归纳集 的概念。 DEFINITION OF AN INDUCTIVE SET. A set of real numbers is called an inductive set if it has the following two properties: (a) The number 1 is in the set. (b) For every x in the set, the number x+1 is also in the set. For example, R is an inductive set. So is the set . Now we shall define the positive integers to be those real numbers which belong to every inductive set. 现在我们来定义正整数,就是属于每一个归纳集的实数。 Let P denote the set of all positive integers. Then P is itself an inductive set bec
显示全部
相似文档