滑块及传送带模型.doc
文本预览下载声明
一、滑块、木板(平板车)模型
例1、一质量为M的长木板静止在光滑水平桌面上.一质量为m的小滑块以水平速度v0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时的速度为v0/3.若把该木板固定在水平桌面上,其它条件相同,求滑块离开木板时的速度v.
例2、一块质量为M长为L的长木板,静止在光滑水平桌面上,一个质量为m的小滑块以水平速度v0从长木板的一端开始在木板上滑动,直到离开木板滑块刚离开木板时的速度为若把此木板固定在水平桌面上,其他条件相同.求:
(1)求滑块离开木板时的速度v;
(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.
如图所示,光滑的曲面轨道的水平出口跟停在光滑水平面上的平板小车的上表面相平,质量为m的小滑块从光滑轨道上某处由静止开始滑下并滑下平板小车,使得小车在光滑水平面上滑动.已知小滑块从光滑轨道上高度为H的位置由静止开始滑下,最终停到板面上的Q点.若平板小车的质量为3m.用g表示本地的重力加速度大小,求:
(1)小滑块到达轨道底端时的速度大小v0
(2)小滑块滑上小车后,平板小车可达到的最大速度V
(3)该过程系统产生的总热量Q
例4、如图所示,一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,mM.现以地面为参照系,给A和B以大小相等、方向相反的初速度如图,使A开始向左运动、B开始向右运动,但最后A刚好没有滑离板.以地面为参系.
1)若已知A和B的初速度大小为v0,求它们最后的速度的大小和方向若初速度的大小未知,求小木块A向左运动到达的最远处从地面上看离出发点的距离.
例5、如图所示,长木板ab的b端固定一挡板,木板连同档板的质量为M=4.0kg,a、b间距离s=2.0m木板位于光滑水平面上.在木板a端有一小物块,其质量m=1.0kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态现令小物块以初速v0=4.0m/s沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a端而不脱离木板求碰撞过程中损失的机械能.
如图所示,质量为m=5kg的长木板放在水平地面上,在木板的最右端放一质量也为m=5kg的物块A.木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2=0.2.现用一水平力F=60N作用在木板上,使木板由静止开始匀加速运动,经过t=1s,撤去拉力.设物块与木板间的最大静摩擦力等于滑动摩擦力.(g取10m/s2)求:
(1)拉力撤去时,木板的速度大小.
(2)要使物块不从木板上掉下,木板的长度至少多大.
(3)在满足(2)的条件下,物块最终将停在距板右端多远处.
例7、如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,与中点C为界,AC段与CB段摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端(B点)如果金属块与车的AC段间的动摩擦因数为μ,与CB段间的动摩擦因数为μ,求μ与μ的比值.
如图所示,质量mA为4.0kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量mB为1.0kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s的瞬时冲量I作用开始运动,当小物块滑离木板时,木板的动能EkA为8.0J,小物块的动能EkB为0.50J,重力加速度取10m/s2,求:
(1)瞬时冲量作用结束时木板的速度v0;
(2)木板的长度L一、传送带模型中要注意摩擦力的突变
①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向
二、传送带模型的一般解法
①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
难点疑点:传送带与物体运动的牵制。牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则( )
A. B.
C. D.
2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一
显示全部