二次函数压轴题(2010.12).doc
文本预览下载声明
专题复习:二次函数压轴题
1、已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
求该抛物线的解析式;
若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)
2、如图所示,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点.
(1)求过三点抛物线的解析式并求出顶点的坐标;
(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;
(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由.
3.(本题8分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12,动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于________________;
(2)当PQ∥AB时,P点离开D点的时间等于______________秒;
(3)当P、Q、C三点构成直角三角形时,P点离开D点多少时间?
4.(本题9分)如图,在△ABC中,∠BAC=90°,BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P、K两点,作MT⊥BC于T.
(1)求证:AK=MT;
(2)求证:AD⊥BC;
(3)当AK=BD时,求证:.
5.如图,已知射线DE与x轴和y轴分别交于D(3,0)和E(0,4)动点C从(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,动点P从点D出发,以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动t秒.
(1)请用含t的代数式分别出点C与点P的坐标;
(2)以点C为圆心、 t个单位长度为半径C与x轴交于A、B(A在B
的左侧),连接PA、PB.
C与射线DE有公共点时求t的取值范围;
当PAB为等腰三角形时,求t的值.
的边在轴的负半轴上,边在轴的正半轴上,且,,矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点.
(1)判断点是否在轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由.
4、如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且=3,sin∠OAB=.
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为,△QNR的面积,求∶的值.
5、在平面直角坐标系xy中,已知抛物线与x轴交于A、B两点(点A在点的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COS∠BCO。
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一P的坐标:若不存在,请说明理由;
(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个?
6、如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,,∠BAO=30°,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折痕为BE。
⑴求点E和点D的坐标;
⑵求经过O、D、A三点的二次函数解析式;
⑶设直线BE与⑵中二次函数图象的对称轴交于点F,M为OF中点,N为AF中点,在x轴上是否存在点P,使△PMN的周长最小,若存在,请求出点P的坐标和最小值;若不存在,请说明理由。
7、如图所示,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,
显示全部