弧长和扇形面积报告.doc
文本预览下载声明
教学课题 弧长和扇形面积 教学目标
1.n°的圆心角所对的弧长L=
2.扇形的概念;
3.圆心角为n°的扇形面积是S扇形=;
4.圆锥母线的概念.
5.圆锥侧面积的计算方法.
6.计算圆锥全面积的计算方法.
7.应用它们解决实际问题.
教学重点与难点 重点:
1.n°的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用.
2.圆锥侧面积和全面积的计算公式.
难点:
2.弧长公式及扇形面积公式的应用.
2.圆锥侧面积和全面积的计算公式的运用
教学过程
一、复习引入
(老师口问,学生口答)请同学们回答下列问题.
1.圆的周长公式是什么?
2.圆的面积公式是什么?
3.什么叫弧长?
老师点评:(1)圆的周长C=2R
(2)圆的面积S图=R2
(3)弧长就是圆的一部分.
二、探索新知
(小黑板)请同学们独立完成下题:设圆的半径为R,则:
1.圆的周长可以看作______度的圆心角所对的弧.
2.1°的圆心角所对的弧长是_______.
3.2°的圆心角所对的弧长是_______.
4.4°的圆心角所对的弧长是_______.
……
5.n°的圆心角所对的弧长是_______.
(老师点评)根据同学们的解题过程,我们可得到:
n°的圆心角所对的弧长为
例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)
分析:要求的弧长,圆心角知,半径知,只要代入弧长公式即可.
解:R=40mm,n=110
∴的长==≈76.8(mm)
因此,管道的展直长度约为76.8mm.
问题:在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图所示:
(1)这头牛吃草的最大活动区域有多大?
(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?
学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积.
(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:
像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.
(小黑板),请同学们结合圆心面积S=R2的公式,独立完成下题:
1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.
2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.
3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.
4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.
……
5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.
老师检察学生练习情况并点评
1.360 2.S扇形=R2 3.S扇形=R2 4.S扇形= 5.S扇形=
因此:在半径为R的圆中,圆心角n°的扇形
S扇形=
例2.如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(结果精确到0.1)和扇形AOB的面积结果精确到0.1)
分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.
解:的长=×10=≈10.5
S扇形=×102=≈52.3
因此,的长为25.1cm,扇形AOB的面积为150.7cm2.
三、应用拓展
例3.(1)操作与证明:如图所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.
(2)尝试与思考:如图a、b所示,将一块半径足够长的扇形纸板的圆心角放在边长为a的正三角形或边长为a的正五边形的中心点处,并将纸板绕O旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a.
(a) (b)
(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若
显示全部