文档详情

毕业设计与论文基于MongoDb海量数据存储的商户平台监控系统.doc

发布:2018-02-27约3.1万字共51页下载文档
文本预览下载声明
基于MongoDb集群的商户平台海量数据存储与呈现 摘 要 随着现代技术的发展和信息的急剧膨胀,数据的存储在企业级应用中显得越来越重要,系统80%的时间都是在处理数据,因此,一个系统性能的好坏直接取决于数据的处理上,而这又主要看数据的存与取。数据存储的难点表现在如何高效安全的存入数据、如何快速的读取存入的数据。同时很多时候数据并不是规则一致,传统的关系型数据存储技术很难处理这类数据的存储问题。 MongoDB是一种介于关系型数据库和非关系型数据库之间的产品,功能非常的丰富。它支持非常松散的数据结构,从而使得其可以存储较为复杂的数据类型。同时,MongoDB的查询语言很强大,并且支持对数据的索引来优化检索的性能。本论文就是基于这样的数据库存储方式来展开海量数据的存储和平台的实时监控的实现的。 在线实时监控系统是本地计算机通过互联网络,对远端设备进行监视和控制,完成对分散控制网络的状态监控以及设备的诊断维护等的功能。监控系统的出现很早,现在的监控系统的功能大多也很完善。本文所阐述的商户平台的监控系统是根据实际的需求开发的数据异常报警提示的监控系统。主要是探测线上数据是否在规定的阀值内活动。 本论文将从非关系型数据库到海量数据的存储,再到数据安全稳定的运行,再到监控平台的实时报警,最后到数据分析结果的展示几个部分来详细阐述基于MongoDb海量数据存储的商户平台监控系统。 关键词:海量数据、非关系型数据、MongoDB、集群 Abstract With the development of modern technology and the rapid expansion of the information, data storage in enterprise applications has become increasingly important. System spends 80% of the time in data processing, therefore, whether the performance of system is good or bad directly depends on data processing. The difficulty of data storage is manifested in how efficiently and safely store the data, and how to quickly read the stored data. While sometimes data is irregular. Traditional relational data storage technology is difficult to deal with this type of data storage. MongoDB is a product that cross relational and non-relational database. It supports very loosely data structure, so that it can store more complex data types. At the same time, the MongoDB query language is very powerful, which supports for data index to optimize the retrieval performance. This thesis is based on the database storage mode to achieve the massive data storage and real-time monitoring platform. Real-time online monitoring system means that the local computer monitors and controls the remote equipment through the Internet, completing the monitoring of distributed control network and the equipment maintenance and other functions. The main function of this monitoring system described in this paper is to detect on-line data whether in the specified threshold activities. This
显示全部
相似文档