哈夫曼编码译码数据结构课程设计.doc
文本预览下载声明
《 数据结构 》课程设计
题目--哈夫曼编码/译码的设计与实现
班级:13软件设计2班
学号:1315925068
姓名:耿浩琪
指导教师:
目 录
目录…………………………………………………………1
需求分析………………………………………………2
设计要求………………………………………………2
三、概要设计………………………………………………2
1、流程图……………………………………………2
2、设计包含的几个部分……………………………4
四、详细设计………………………………………………2
五、显示结果………………………………………………9.
六、心得体会………………………………………………10
七、参考文献………………………………………………11
哈夫曼编码译码
需求分析
在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,赫夫曼编码正是一种应用广泛且非常有效的数据压缩技术。哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。1-1所示。
(2)设计包含的几个方面:① 赫夫曼树的建立
赫夫曼树的建立由赫夫曼算法的定义可知,初始森林中共有n棵只含有根结点的二叉树。算法的第二步是:将当前森林中的两棵根结点权值最小的二叉树,合并成一棵新的二叉树;每合并一次,森林中就减少一棵树,产生一个新结点。显然要进行n-1次合并,所以共产生n-1个新结点,它们都是具有两个孩子的分支结点。由此可知,最终求得的赫夫曼树中一共有2n-1个结点,其中n个结点是初始森林的n个孤立结点。并且赫夫曼树中没有度数为1的分支结点。我们可以利用一个大小为2n--1的一维数组来存储赫夫曼树中的结点。
② 赫夫曼编码
要求电文的赫夫曼编码,必须先定义赫夫曼编码类型,根据设计要求和实际需要定义的类型如下:
typedet struct {
char ch; // 存放编码的字符
char bits[N+1]; // 存放编码位串
int len; // 编码的长度
}CodeNode; // 编码结构体类型
③ 代码文件的译码
译码的基本思想是:读文件中编码,并与原先生成的赫夫曼编码表比较,遇到相等时,即取出其对应的字符存入一个新串中。
详细设计
(1)①赫夫曼树的存储结构描述为:
#define N 50 // 叶子结点数
#define M 2*N-1 // 赫夫曼树中结点总数
typedef struct {
int weight; // 叶子结点的权值
int lchild, rchild, parent; // 左右孩子及双亲指针
}HTNode; // 树中结点类型
typedef HTNode HuffmanTree[M+1];
②哈弗曼树的算法
void CreateHT(HTNode ht[],int n) //调用输入的数组ht[],和节点数n
{
int i,k,lnode,rnode;
int min1,min2;
for (i=0;i2*n-1;i++)
ht[i].parent=ht[i].lchild=ht[i].rchild=-1; //所有结点的相关域置初值-1
for (i=n;i2*n-1;i++) //构造哈夫曼树
{
min1=min2=32767; //int的范围是-32768—32767
lnode=rnode=-1; //lnode和rnode记录最小权值的两个结点位置
for (k=0;k=i-1;k++)
{
if (ht[k].parent==-1) //只在尚未构造二叉树的结点中查找
{
if (ht[k].weightmin1) //若权值小于最小的左节点的权值
{
min2=min1;rnode=lnode;
min1=ht[k].we
显示全部