一种基于相似性度量的综合推荐模型的开题报告.docx
一种基于相似性度量的综合推荐模型的开题报告
Title:AComprehensiveRecommendationModelBasedonSimilarityMeasurement
Introduction:
Withtheexplosivegrowthofinformationontheinternet,peoplearefacingthechallengeoffindingrelevantandpersonalizedcontent.Toaddressthisissue,recommendationsystemshavebeenwidelyappliedinvariousdomains,suchase-commerce,socialmedia,andentertainment.Amongtherecommendationmodels,similarity-basedmethodshavebeenproventobeeffectiveincapturinguserspreferencesandinterests.However,mostexistingsimilarity-basedmodelsfocusonasingletypeofdata(e.g.,itemattributes,userprofile,orinteractionhistory),whichmaynotfullyreflectthecomplexityofusersinterests.Therefore,developingacomprehensiverecommendationmodelthatintegratesmultipletypesofdataandperformssimilaritymeasurementacrossthemisdesirable.
Objectives:
Thegoalofthisprojectistodevelopacomprehensiverecommendationmodelthatcanleveragemultiplesourcesofdatatoprovidemoreaccurateanddiversifiedrecommendations.Specifically,theobjectivesare:
1.Toinvestigatethestate-of-the-artrecommendationmodelsthatutilizesimilarity-basedtechniquesandtheirlimitations.
2.Toproposeanovelcomprehensiverecommendationmodelthatintegratesmultipletypesofdataandperformssimilaritymeasurementacrossthem.
3.Toevaluatetheproposedmodelonreal-worlddatasetsandcompareitwithotherstate-of-the-artmethodsintermsofaccuracy,diversity,andnovelty.
Methodologies:
Theproposedmodelwillconsistofthreemaincomponents:datapreprocessing,similaritymeasurement,andrecommendationgeneration.
1.Datapreprocessing:Theobjectiveofdatapreprocessingistoobtaintherelevantinformationfromvarioussources,includinguserprofile,itemattributes,andinteractionhistory.Thecollecteddatawillbetransformedintoaunifiedformatandnormalizedtoeliminatetheeffectofscale.
2.Similaritym