基于电化学掺杂法处理的TiO2纳米管阵列电极的高性能和可再生超级电容器.doc
文本预览下载声明
基于电化学掺杂法处理的TiO2纳米管阵列电极的高性能和可再生超级电容器
简单的电化学掺杂方法来使显著改善TiO2电极的电子电导率和。这些加氢TiO2电极电流密度0.05 mA?2有非常高电容20.08?2。电化学性能可归因于TiO2-H引入间隙掺杂氢离子和氧空缺超高的电导率。平均电流密度0.05 mA cm?2时,掺杂的电容5.42mF cm?2,功率密度为 27.66 mW cm?2。显 60%比电容 更是,可以通过同的掺杂过程恢复这个提高了的尤其是循环稳定。
Abstract:This paper develope simple electrochemical doping method to significantly improve the electronic conductivity and the electrochemical performances of TiO2 nanotube electrodes. These TiO2 nanotube electrodes treated by the electrochemical hydrogenation doping (TiO2-H) exhibit a very high average specific capacitance of 20.08mF cm?2 at a current density of 0.05 mA cm?2,~20 times more than the pristine TiO2 nanotube electrodes.The improved electrochemical performances can be attributed to ultrahigh conductivity of TiO2-H due to the introduction of interstitial hydrogen ions and oxygen vacancies by the doping. The supercapacitor device assembled by the doped electrodes delivers a specific capacitance of 5.42 mF cm?2 and power density of 27.66 mW cm?2, on average, at the current density of 0.05 mA cm?2. The device also shows an outstanding rate capability with 60% specific capacitance retained when the current density increases from 0.05 to 4.00 mA cm?2. More interestingly, the electrochemical performances of the supercapacitor after cycling can be recovered by the same doping process. This strategy boosts the performances of the supercapacitaor, especially cycling stability.
Key words: electrochemic; nanotube electrodes; high performance; supercapacitor
引言
能源是经济社会发展的重要基础,是我国现代化建设的基本保障。太阳能是一种广泛使用的可再生清洁能源。利用太阳能发电是太阳能利用的主要形式。半导体太阳能电池就是一种直接把太阳能转换为电能的器件,具有高效、寿命长、质量轻、性能可靠、使用方便等诸多优点。随着纳米制备技术的发展,一种新型TiO2纳米结构—TiO2纳米管阵列被发现并广泛应用于太阳能电池、光催化剂、气敏传感器、超级电容器等领域。与传统的TiO2纳米晶(TiO2纳米薄片)相比,TiO2纳米管阵列制备简便,通过阳极氧化在Ti片上直接生长,并且TiO2纳米管阵列/Ti可以直接用作光电极。
阳极TiO2,环境传感,能源存储设备等引了尤其是阳极处理的TiTiO2纳米管阵列高表面积,稳定行。此外,TiO2纳米阵列沿长轴Ti薄片提供了直接。TiO2是宽间带隙半导体,因此原始TiO2纳米管阵列的电容性很差。前人对TiO2纳米管阵列TiO2 粉末;在氢等离子体中处理TiO2 粉末后进行光催化;在电石气中进行高温处理等。但这些改性方法都过程繁琐,耗资大,不实用。为探索一种改性简便、实用的方法,有人应用电化学改性
显示全部