文档详情

不同坐标系转换方法及影响因素研究_蒋宗伟.doc

发布:2017-04-30约5.21千字共9页下载文档
文本预览下载声明
不同坐标系转换方法及影响因素研究_蒋宗伟 总564期第5期河南科技Vol.564,No.5摘要:本文从定义和实践方面分析了常用坐标系之间的差异,并比较常见坐标系转换模型的优缺点和内在联系,探讨了影响坐标转换的主要因素。这对测量人员在工作中具有很强的实践指导意义。 关键词:参心坐标系;地心坐标系;拟合;累积误差 中图分类号:P226文献标识码:A文章编号:1003-5168(2015)05-0154-3 StudyontheMethodandtheInfluenceFactorsofDifferentCoordinate SystemTransformation (ChinaShipSurveyandDesignInstituteCo.,Ltd.,Shanghai200063)JiangZongwei Abstract:Thispaperanalyzesthedifferencesbetweencommoncoordinatesystemsfromthedefinitionandpractice,andcomparestheadvantagesanddisadvantagesandinternalconnectionofthecommoncoordinatesystemtransformationmodels,anddiscussesthemainfactorsthataffectthecoordinatetransformation,whichhasstrongpracticalsignificance.Keywords:referencecentercoordinatesystem;innerearthcoordinatesystem;fitting;cumulativeerror 随着科技进步和测量学理论研究的不断深入,采用 空间技术手段测定的坐标成果在定义坐标原点、地球质 心、坐标轴方向等均与传统坐标系所采用的参数存在较 大差异,难以满足全球化格局下地球物理方面有关灾害 预报、工程建设、交通运输、国防建设等对高精度测绘地 理信息技术服务的要求。 1不同坐标系之间的差异 从根本上讲,各种坐标系的根本区别在于参心坐标 系与地心坐标系的差异。如图1所示。1.1坐标系定义的差别(原点、椭球定位)图1参心坐标系(t) 和地心坐标系 参心坐标系的参考椭球的中心和地球质心不一致。 地心坐标系是以地球质量中心为原点的坐标系,其椭球 中心与地球质心重合,且椭球定位与全球大地水准面最 为密合。 主要包括坐标原点、三个坐标轴的指向、尺度以及地 球椭球的4个基本参数定义上的差异。理论上,此类差异可利用相似转换原理,通过平移、旋转和缩放实现两种坐标系上同名控制点之间的精确转换。1.2参心坐标系的实现手段是以传统的大地测量手段进行的,各控制点之间相互影响,控制点之间的相关性尤为明显。而地心坐标是基于空间测量技术测定的,各控制实测手段的差别 收稿日期:2015-4-20 作者简介:蒋宗伟(1981-11),男,工程师,双学士学位,研究方向:大地测量、海洋测绘、工程测量;结构基础检测;变形监测数据分析预报。 第5期 点之间相关性不大[1]。 1.3 精度差别 不同坐标系转换方法及影响因素研究·155· 当待转换的两个坐标系间存在局部误差时,转换精度较低。这一点对于广大测量工作者不难理解。 2.2 这类模型的转换参数和坐标系间无明确逻辑关系,这类转换模型主要有多项式拟合模型、仿射变换模型等。 多项式拟合模型是对新旧两种坐标系中点的坐标建立多项式关系,并利用一系列重合点解算出多项式系数,组成多项式拟合模型。该模型的优点是不要求两坐标系的投影方式,椭球参数,椭球定位等都相同。因此它不仅适用于两个局部坐标系间的转换,也适用于局部坐标系到地心坐标系的转换,其缺点是依赖公共点的选择,对于公共点分布不均匀的,其转换精度较低,只适合小范围使用。 仿射变换模型实际是多项式拟合模型的特例,参数仅取其常数项和一次项。仿射变换不具有正形性,其主要特点是:新旧坐标系的点和直线存在线性对应关系,新旧坐标系的任何方向的两线段长度比相等,任何三角形面积比相等。 上述两类大地坐标系转换型应用范围广,使用频率高。但须注意使用范围和条件,否则会影响转换精度而无法满足高精度测量应用的要求。 3实例 多项式拟合模型 参心坐标系通常缺乏高精度的外部控制,因此长距离控制点相对精度仅为10-6
显示全部
相似文档