安徽省定远育才实验学校2024届高三最后一卷数学试卷含解析.doc
安徽省定远育才实验学校2024届高三最后一卷数学试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图,若输入,,则输出的()
A.4 B.5 C.6 D.7
2.的展开式中的系数是()
A.160 B.240 C.280 D.320
3.已知函数,存在实数,使得,则的最大值为()
A. B. C. D.
4.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()
A.12种 B.18种 C.24种 D.64种
5.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()
A. B. C. D.
6.如图,在平行四边形中,对角线与交于点,且,则()
A. B.
C. D.
7.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()
A. B. C.8 D.6
8.设,其中a,b是实数,则()
A.1 B.2 C. D.
9.过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的标准方程可能为()
A. B. C. D.
10.已知二次函数的部分图象如图所示,则函数的零点所在区间为()
A. B. C. D.
11.设,则()
A. B. C. D.
12.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()
A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?
二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.
14.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________.
15.已知函数是定义在上的奇函数,且周期为,当时,,则的值为___________________.
16.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.
(1)求圆的极坐标方程;
(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.
18.(12分)已知均为正实数,函数的最小值为.证明:
(1);
(2).
19.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.
(1)为上一点,且,当平面时,求实数的值;
(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.
20.(12分)选修4-5:不等式选讲
设函数.
(1)当时,求不等式的解集;
(2)若在上恒成立,求实数的取值范围.
21.(12分)已知函数的图象在处的切线方程是.
(1)求的值;
(2)若函数,讨论的单调性与极值;
(3)证明:.
22.(10分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.
(1)求证:平面;
(2)求三棱锥的体积.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
根据程序框图程序运算即可得.
【详解】
依程序运算可得:
,
故选:C
【点睛】
本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.
2、C
【解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.
【详解】
由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.
故选:C
【点睛】
本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.
3、A
【解析】
画出分段函数图像,可