课堂疑难问题记录和解答.doc
文本预览下载声明
四年级上册疑难问题及解答
1、对于亿这样比较大的计数单位,怎样帮助学生建立相应的数感?
?新课标非常强调对学生数感的培养,教材中也在相关的单元编入了大量帮助学生建立数感的素材。例如,在认识20以内的数、100以内的数时,教材就注意通过估一估、数一数等活动帮助学生形成对十、百等数量大小的感觉。但是,对于一些比较大的计数单位(如万、亿),如何建立相应的数感?确实成为教师们教学中的困惑。
首先要说明一点,为了叙述方便,这儿所讲的数感仅仅指对一个数量相对大小的感觉(事实上,数感有着更丰富的内涵,指的是关于数与数量表示、数量大小比较、数量和运算结果的估计、数量关系等方面的感悟)。
数感的培养不是一两堂课就能达到目标的。因此,在日常教学中,需要时时处处进行这方面的渗透,不断积累这方面的经验。例如,为了帮助学生形成对100这个数的感觉,教师可以通过让学生看百羊图、数100粒花生、数100根小棒、估计一堆水果的数量等活动,来建立相应的数感。
由上面的例子也可以看出,数感的培养不可能是一个抽象的过程。空泛地让学生说一说“1万有多大?1亿有多大?”并没有太大的意义,应该借助大量的生活经验,帮助学生感受某种具体事物某个数量的相对大小。即便是借助直观的物体,学生也未必能建立起很好的数感。例如,我们可以让学生观察一个由1000(10×10×10)个小正方体组成的大正方体,感受1千有多大,也可以让他们看十个这样的正方体,感受1万有多大,但如果想通过同样的方式来建立1亿的数感,恐怕在操作层面上是难以实行的。要建立1亿的数感,需要发挥学生的想像力,凭借生活经验,形成一种大致的感觉就可以了,教学时要求不宜过高。
教材中提供了一些帮助学生建立数感的范例,教学时可以参考借鉴。例如,第12页的第15题,让学生通过一些数学策略和生活经验判断某个数据信息的合理性,就是一种很好的建立数感的方式。再如,第4页的“你知道吗”以及第33页的“1亿有多大”,都是借助一些具体活动,通过计算,帮助学生感受1亿的相对大小。但要感受1亿,并不像较小的计数单位那样,仅仅凭用眼看、用手摸等直观活动就能达到目的,还需要学生能更好地利用数学工具,同时,要具备很好的长度观念、质量观念、时间观念,更需要学生有较强的想像能力,所有这些,都可以辅助学生较好地建立1亿的数感。例如,1亿名小学生手拉手可以绕地球赤道3圈半,学生虽然不可能对地球赤道的长度有亲身体验,但可以利用想像和简单的科学知识,进行粗略的感受。
除了教材上提供的这些素材以外,教师还可以充分发挥学生的创造性,让学生自行选择素材,设计各种活动,感受丰富多样的“1亿”,如:一亿名小学生站在一起,占地面积大约是多少;1亿粒大米有多少;1亿粒黄豆有多少;1亿滴水有多少;等等。
2、教材第60页的问题解决中,运用了乘法估算,并把两种估算方法加以比较。估算方法有好坏之分吗?应怎样展开估算教学?
估算能力是学生计算能力中很重要的一个方面,新课改中加大了估算内容的比重,这也是符合各国数学课改的潮流的。
估算的功能分为两方面,一是数学上的功能,例如培养数感(如判断24×12=2408计算结果的合理性),为精确计算作准备(如要计算492÷12时,往往先用480÷10或490÷10或500÷10来试商)。二是估算在生活中的应用,当无法精确计算或没有必要精确计算时,有时用估算也能解决问题。下面谈的主要是第二种情况。
在进行估算教学时,可以从以下几方面去思考,以供参考。
一、估算意识与估算技能的培养同样重要,前者的重要性有时甚至超过后者。过去的教学中,教师往往把更多的注意力放在“如何估算”上,例如,先用“四舍五入法”求出算式中的近似数,再对近似数进行精确计算,这样,估算就变成了一种僵化的固定的方法。对于“为什么要估算”,过去关注得比较少。实际上,学生能否根据不同的情境灵活选择合适的算法,是考查其解决问题能力的重要方面。对面对一个数据模糊不清甚至残缺的问题情境时,有的学生束手无策,因为数据不完整,无法精确计算,但有的学生却能利用已有信息,灵活运用估算策略,把问题解决,这就反映出两类学生不同层次的解决问题水平。
二、估算策略的灵活性问题。上面已经谈到,过去教学估算,策略往往是唯一的、固定的,但实际生活中解决一个现实问题时,常常是“条条大路通罗马”,选择何种估算策略,并没有一定之规。例如,要解决这样一个问题:“燕鸥每天飞735千米,从北极到南极行程17000米,20天能飞到吗?”可以把735看成750,也可以把735看成800,都能达到解决问题的目的。
三、估算策略的有效性问题。抽象地讨论估算方法的优劣似乎意义不大,因为判断优劣的标准本身就不好定。但对于一个具体的问题
显示全部