2024届上海市十二校高考数学全真模拟密押卷含解析.doc
2024届上海市十二校高考数学全真模拟密押卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为
A. B.
C. D.
2.若函数函数只有1个零点,则的取值范围是()
A. B. C. D.
3.当时,函数的图象大致是()
A. B.
C. D.
4.已知正四面体外接球的体积为,则这个四面体的表面积为()
A. B. C. D.
5.设集合,,则()
A. B.
C. D.
6.设,为非零向量,则“存在正数,使得”是“”的()
A.既不充分也不必要条件 B.必要不充分条件
C.充分必要条件 D.充分不必要条件
7.设,,,则、、的大小关系为()
A. B. C. D.
8.已知集合,则()
A. B.
C. D.
9.设,则()
A. B. C. D.
10.已知角的终边经过点,则的值是
A.1或 B.或 C.1或 D.或
11.已知向量,,设函数,则下列关于函数的性质的描述正确的是
A.关于直线对称 B.关于点对称
C.周期为 D.在上是增函数
12.设函数恰有两个极值点,则实数的取值范围是()
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是
14.已知,则________.(填“”或“=”或“”).
15.已知直角坐标系中起点为坐标原点的向量满足,且,,,存在,对于任意的实数,不等式,则实数的取值范围是______.
16.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数,是函数的导数.
(1)若,证明在区间上没有零点;
(2)在上恒成立,求的取值范围.
18.(12分)已知在等比数列中,.
(1)求数列的通项公式;
(2)若,求数列前项的和.
19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程以及曲线的直角坐标方程;
(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.
20.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.
21.(12分)三棱柱中,平面平面,,点为棱的中点,点为线段上的动点.
(1)求证:;
(2)若直线与平面所成角为,求二面角的正切值.
22.(10分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,.
(Ⅰ)证明:;
(Ⅱ)若为上的动点,求与平面所成最大角的正切值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.
详解:因为每一个单音与前一个单音频率比为,
所以,
又,则
故选D.
点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:
(1)定义法,若()或(),数列是等比数列;
(2)等比中项公式法,若数列中,且(),则数列是等比数列.
2、C
【解析】
转化有1个零点