文档详情

第三章-水的生物化化学处理法4.ppt

发布:2018-09-08约7.06千字共79页下载文档
文本预览下载声明
第五节 生物脱氮除磷 氮和磷的排放会加速导致水体的富营养化,其次是氨氮的好氧特性会使水体的溶解氧降低,此外,某些含氮化合物对人和其他生物有毒害作用。因此,国内外对氮磷的排放标准越来越严格。本章阐述生物脱氮除磷技术。生物脱氮除磷技术是近20年发展起来的,一般来说比化学法和物理化学法去除氮磷经济,尤其是能有效地利用常规的二级生物处理工艺流程进行改造达到生物脱氮除磷的目的,是日前应用广泛和最有前途的氮磷处理方法。 一、生物脱氮原理及影响因素 (一)、生物脱氮原理 污水中氨主要以有机氮和氨氮形式存在。在生物处理过程中,有机氮很容易通过微生物的分解和水解转化成氨氮,即氨化作用。传统的硝化—反硝化生物脱氮的基本原理就在于通过硝化反应先将氨氮转化为亚硝态氮、硝态氮,再通过反硝化反应将硝态氮、亚硝态氮还原成气态氮从水中逸出,从而达到脱氮的目的。 氮在水中的存在形态与分类 氨化与硝化反应过程 硝化反应的条件 (1)好氧状态:DO≥2mg/L;1gNH3-N完全硝化需氧4.57g,即硝化需氧量。 (2)消耗废水中的碱度:1gNH3-N完全硝化需碱度7.1g(以CaCO3计),废水中应有足够碱度,以维持pH值不变。 (3)污泥龄θC≥(10-15)d。 (4)BOD5≤20mg/L。 反硝化 当缺乏有机物时,则无机物如氢、Na2S等也可作为反硝化反应的电子供体 (1)反硝化菌属于异养型兼性厌氧菌,在缺氧条件下,进行厌氧呼吸,以NO3-—O为电子受体,以有机物的氢为电子供体。 (2)反硝化过程中,硝酸态氮有二种转化途径—同化反硝化(合成细胞)和异化反硝化(还原为N2↑),但以异化反硝化为主。 (3)反硝化反应的条件 反硝化反应的条件 DO0.5mg/L,一般为0.2~0.3mg/L(处于缺氧状态),如果DO较高,反硝化菌利用氧进行呼吸,氧成为电子受体,阻碍NO3--O成为电子受体而使N难还原成N2↑。但是反硝化菌体内的某些酶系统组分只有在有氧条件下,才能合成。反硝硝化菌以在缺氧-好氧交替的环境中生活为宜。 BOD5/TN≥3~5,否则需另投加碳源,现多采用CH3OH,其分解产物为CO2+H2O,不留任何难降解的中间产物,且反硝化速率高。 目前反硝化投加有机碳源一般利用原污水中的有机物。 还原1g硝态氮能产生3.57g碱度,而在硝化反应中,1gNH3-N氧化为NO3--N要消耗7.14g碱度,在缺氧-好氧中,反硝化产生的碱度可补偿硝化消耗碱度的一半左右。 脱氮新理念 (1)短程硝化-反硝化 该方法就是将硝化过程控制在亚硝化阶段而终止,随后进行反硝化,在反硝化过程将亚硝酸根作为最终受氢体,故称为短程(或简捷)硝化-硝化。 控制硝化反应停止在亚硝化阶段是实现短程硝化-反硝化生物脱氮技术的关键,其主要影响因素有温度、污泥龄、溶解氧、pH值和游离氨等。控制较高温度、较低溶解氧和较高pH值和极短的污泥龄条件等,可以抑制硝酸菌生成,使亚硝酸菌占绝对优势,从而使硝化过程控制在亚硝化阶段。 (2)厌氧氨氧化 厌氧氨氧化是荷兰Delft大学1990年提出的一种新型脱氮工艺。 基本原理是先将氨氮部分氧化成亚硝酸氮,控制氨根离子与亚硝酸根离子比例为1:1,然后通过厌氧氨氧化作为反硝化实现脱氮的目的。全过程为自养的好氧亚硝化反应结合自养的厌氧氨氧化反应.无需有机碳源,对氧的消耗比传统硝化/反硝化减少62.5%,同时减少碱消耗量和污泥生成量。 (二)、硝化—反硝化过程影响因素 1.温度 硝化反应的适宜温度范围是30~35℃,温度不但影响硝化茵的比增长速率,而且影响硝化菌的活性。反硝化反应的最佳温度范围为35~45℃,温度对硝化菌的影响比反硝化菌大。 2.溶解氧 硝化反应必须在好氧条件下进行,一般应维持混合液的溶解氧浓度为2~3mg/L,反硝化溶解氧浓度0.3 mg/L以下。 3.pH值 硝化反应的最佳pH值范围为7.5~8.5,硝化菌对pH值变化十分敏感,当pH值低于7时,硝化速率明显降低。反硝化过程的最佳pH值范围为6.5~7.5,不适宜的PH值会影响反硝化菌的生长速率和反硝化酶的活性。 4.C/N比 C/N比值是影响硝化速率和过程的重要因素。硝化菌是自养菌,硝化菌产率或比增长速率比活性污泥异养菌低得多,若废水中BOD5值太高,将有助于异养菌迅速增殖,从而使微生物中的硝化菌的比例下降,一般认为,只有BOD5低于20mg/L时,硝化反应才能完成。反硝化过程需要充足的碳源,理论上lgNO2还原为N2需要碳源有机物2.86g。 5、污泥龄 为使硝化菌能在连续流的反应系统中存活并维持一定数量,微生物在反应器的停留时间即污泥龄应
显示全部
相似文档