基于改良蚁群算法的神经网络分类规则提取①.PDF
文本预览下载声明
2011 年 第 20 卷 第 7 期 计 算 机 系 统 应 用
基于改良蚁群算法的神经网络分类规则提取①
许海波,刘端阳,胡同森
(浙江工业大学 计算机科学与技术学院,杭州 310023)
摘 要:在数据挖掘领域,分类获得了很大的关注度,其主要目的是预测数据对象的所属类别。分类方法可分
为基于规则和不基于规则两大类,其中神经网络由于在预测、从经验中学习、从先前样本中泛化等方面的优秀
表现,使其成为分类领域的一个重要的方法,并往往能够获得很高的分类准确性,然而其非常有限的解释能力
成为了制约其应用的一大缺陷。提出了一种基于改良蚁群算法的神经网络分类规则提取方法,通过改良的蚁群
算法来填补神经网络有限的解释能力,从数据中提取出分类规则。实验证明,该方法能够很好的辅助神经网络,
从要分类的数据中获取规则。
关键词:数据分类;数据挖掘;规则提取;蚁群算法;神经网络
Rules Extraction from Artificial Neural Networks for Classification Based Improved Ant
Colony Algorithm
XU Hai-Bo, LIU Duan-Yang, HU Tong-Sen
(College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)
Abstract: Classification obtains great concern in the field of data mining. Its main purpose is to predict the classification
of data objects. Classification can be divided into two major categories of rule-based and non-rule-based, however
because of the excellent performance that artificial neural network(ANN) can obtain from prediction, studying from
experience and generalizing from the previous samples, making it an important method of classification. Although
ANNs can achieve high classification accuracy, their explanation capability is very limited, as to restrict its application.
This paper presents an improved ant colony algorithm based on ANNs classification rule extraction method, an
improved ant colony algorithm is to help solve the ANN’s limited explanation capability to extract rules from the data.
Experiments show that this approach could coordinate neural network to obtain rules of classified data well.
Key words: data classification; data mining; rules extraction; ant colony algorithm; artificial neural networks
数据挖掘即分析所获得的数据集来找出不为人所 来表示知识:IF (条件)THEN (类别)。在这里,规
关注的联系和以对数据所有者有用且易于理解的新颖 则提取的主要
显示全部