基于GPRS的电动汽车道路行驶工况自学习.pdf
文本预览下载声明
第 43 卷 第 4 期 天 津 大 学 学 报 Vol.43 No.4
2010 年 4 月 Journal of Tianjin University Apr. 2010
▋
基于 GPRS 的电动汽车道路行驶工况自学习
庄继晖,谢 辉,严 英
(天津大学内燃机燃烧学国家重点实验室,天津 300072)
摘 要 :提出了一种基于 GPRS 的道路行驶工况数据的远程采集方法,并将其应用在电动汽车的实际运行中,获得电
动汽车道路试验原始数据库.同时将自组织映射(SOM)神经网络引入到行驶工况的自学习中,通过 SOM 网络对原始
数据进行运动学片段的聚类分析,构建出了电动汽车在实际运行中的 3 种典型工况,为电动汽车基于行驶工况的自适
应优化控制策略提供了基础环节.所构建的行驶工况和其他行驶工况相比具有一般规律,表明应用 SOM 网络能够很
好地实现道路行驶工况的自学习功能.
关键词 :电动汽车;行驶工况;自学习;自组织映射网络;GPRS
中图分类号:U469.72 文献标志码 :A 文章编号 :0493-2137 (2010)04-0283-04
GPRS Based Driving Cycle Self-Learning for Electric Vehicle
ZHUANG Ji-hui ,XIE Hui ,YAN Ying
(State Key Laboratory of Engine ,Tianjin University ,Tianjin 300072 ,China)
Abstract :A methodology to collect the driving cycle data remotely based on GPRS was presented and applied to a running
electric vehicle to build a driving cycle database for road test. The self-organizing map (SOM)network was introduced into
self-learning of driving cycle ,so the cluster analysis was performed to classify kinematic sequence of original data. Based on
the classification of kinematic sequence ,three types of typical driving cycles of electric vehicle road test were constructed
and provided foundation for self-adapt optimal control strategy for electric vehicle. Compared with other driving cycles ,the
constructed driving cycles have common regularity ,which shows that self-learning of driving cycle is perfectly realized by
the application of SOM netwo
显示全部