Kmeans聚类分析算法中一个新的确定聚类个数有效性的指标_李双虎.pdf
文本预览下载声明
20 4 Vol.20 No.4
2003 11 Journal of the Hebei A ademy of S ien es Nov.2003
:1001-9383(2003)04 -0199-04
K-means
1 2
李双虎, 王铁洪
(1., 050081;
2., 050081)
【 】 K-means 算法是聚类分析中使用最为广泛的算法之 一。然而, 该算法通常受到初
[ 1]
聚类条件的影响。关于这 个问题的详细讨论可参看文献 。该算法的另 一个不足之处是,
聚类数目K 必须作为参数由用户提供。笔者提出了 一个新的有关聚类有效性的度量指标和优
化的K-means 算法。它能自动确定最佳聚类 个数。
【】 聚类分析;K-means 算法;有效性度量;指标
【】 TP 301.6 【】 A
New validity index for determining the number
of clusters in K-means clustering
1 2
LI Shuang-hu , WA NG Tie-hong
(1 .Institute of App lied Ma th ..Hebei Academy of Sciences, Sh ij iaz huang 050081, China;
2 .Institute of A utomation , Hebei Academy of Sciences, Shij iaz huang 050081, China )
Abstract K-Means Clustering Algorithm is one of the most popular methods in luster analysis.
How ever, it is well know n that K-means algorithm suffers from initial starting onditions
effe ts(initial lustering and instan e order effe ts).For more detailed dis ussion on initialization
methods, see literature [1] .Another w eakness of k-means algorithm is that the number of
lusters, , must be supplied as a parameter.In this paper, a new validity measure for k-means
lustering is presented to allow the number of lusters to be determined automati ally .
Keywords Cluster analysis;K-Means Algorithm ;Validity measure;Index
(),
“” “”, “”。:
(1)K 。, 。
(2), “”。
1 K-means
K-means :
n
MinimizeJ (X , U, V)=
显示全部