文档详情

初中数学最值问题典型例题(含答案解析分析).doc

发布:2019-01-06约4.07千字共11页下载文档
文本预览下载声明
WORD格式 可编辑 专业技术 知识共享 中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题 3、二次函数中最值问题) 问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点) 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” AB′Pl A B ′ P l 条件:如下左图,、是直线同旁的两个定点. 问题:在直线上确定一点,使的值最小. 方法:作点关于直线的对称点,连结交于 点,则的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由. 例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示) (1)求S△DBF; (2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF; (3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。 例4、如图,在平面直角坐标系中,直线与抛物线交于A,B两点,点A在x轴上,点B的纵坐标为3。点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D (1)求a,b及的值 (2)设点P的横坐标为 ①用含的代数式表示线段PD的长,并求出线段PD长的最大值; ②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的值,使这两个三角形的面积之比为9:10?若存在,直接写出值;若不存在,说明理由. 例5、如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线经过点A(4,0)与点(-2,6). (1)求抛物线的函数解析式; (2)直线m与⊙C相切于点A,交y于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值; (3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标. 例1、证明:(1)∵△ABE是等边三角形, ∴BA=BE,∠ABE=60°. ∵∠MBN=60°, ∴∠MBN-∠ABN=∠ABE-∠ABN.即∠MBA=∠NBE. 又∵MB=NB, ∴△AMB≌△ENB(SAS).(5分) ?解: (2)①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.(7分) ②如图,连接CE,当M点位于BD与CE的交点处时, AM+BM+CM的值最小.(9分) 理由如下:连接MN,由(1)知,△AMB≌△ENB, ∴AM=EN, ∵∠MBN=60°,MB=NB, ∴△BMN是等边三角形. ∴BM=MN. ∴AM+BM+CM=EN+MN+CM.(10分) 根据“两点之间线段最短”,得EN+MN+CM=EC最短 ∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.(11分) 例2、 解:(1)设所求抛物线的解析式为:,依题意,将点B(3,0)代入,得: 解得:a=-1∴所求抛物线的解析式为: (2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称, 在x轴上取一点H,连接
显示全部
相似文档