半导体物理学[刘恩科、朱秉升]第七版_最全课后题答案解析.doc
文本预览下载声明
完美 WORD 格式
专业 知识 分享
第一章习题
1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:
Ec=
(1)禁带宽度;
导带底电子有效质量;
价带顶电子有效质量;
(4)价带顶电子跃迁到导带底时准动量的变化
解:(1)
2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据: 得
补充题1
分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)
Si在(100),(110)和(111)面上的原子分布如图1所示:
(a)(100)晶面 (b)(110)晶面
(c)(111)晶面
补充题2
一维晶体的电子能带可写为,
式中a为 晶格常数,试求
(1)布里渊区边界;
(2)能带宽度;
(3)电子在波矢k状态时的速度;
(4)能带底部电子的有效质量;
(5)能带顶部空穴的有效质量
解:(1)由 得
(n=0,?1,?2…)
进一步分析 ,E(k)有极大值,
时,E(k)有极小值
所以布里渊区边界为
(2)能带宽度为
(3)电子在波矢k状态的速度
(4)电子的有效质量
能带底部 所以
(5)能带顶部 ,
且,
所以能带顶部空穴的有效质量
半导体物理第2章习题
1. 实际半导体与理想半导体间的主要区别是什么?
答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。这个过程叫做施主杂质的电离过程。能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。
3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p型半导体。
Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P型半导体。
4. 以Si在GaAs中的行为为例,说明IV族杂质在 = 3 \* ROMAN III-V族化合物中可能出现的双性行为。
Si取代GaAs中的Ga原子则起施主作用; Si取代GaAs中的As原子则起受主作用。导带中电子浓度随硅杂质浓度的增加而增加,当硅杂质浓度增加到一定程度时趋于饱和。硅先取代Ga原子起施主作用,随着硅浓度的增加,硅取代As原子起受主作用。
5. 举例说明杂质补偿作用。
当半导体中同时存在施主和受主杂质时,
若(1) NDNA
因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到NA个受主能级上,还有ND-NA个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= ND-NA。即则有效受主浓度为NAeff≈ ND-NA
(2)NAND
施主能级上的全部电子跃迁到受主能级上,受主能级上还有NA-ND个空穴,它们可接受价带上的NA-ND个电子,在价带中形成的空穴浓度p= NA-ND. 即有效受主浓度为NAeff≈ NA-ND
(3)NA?ND时,
不能向导带和价带提供电子和空穴
显示全部