基于视觉的车道线识别算法研究 优秀.doc
文本预览下载声明
毕业设计开题报告
题 目 基于视觉的车道线识别算法研究 学生姓名 学号 班级 电 班 专业 自动化 本课题的研究背景、国内外研究现状
随着城市化的发展和汽车的普及,交通环境日趋恶劣,交通拥挤加剧,交通事故频发,交通问题已经成为全球范围内人们普遍关注的社会问题。基于21世纪信息和计算机技术的高速发展,对待道路交通问题上,人们越来越倾向于依靠高科技寻求解决之路,世界各国都竞相开展智能车路系统和智能交通系统。随之,智能车辆导航的概念应运而生。在车辆视觉导航系统中最为关键的技术就是计算机视觉,计算机视觉的主要任务是完成道路的识别和跟踪。国内外许多学者对视觉导航进行了研究,有试图用双目或多目视觉完成导航任务,但面临的最大难点是不能较好的解决多目视觉系统的匹配问题且设备的成本较高;也有致力于单视目视觉技术的研究,但其方法缺少实时性;有尝试用三维重建的方法识别车道线,但由于其算法复杂度高难以满足实时性的要求。提高算法实时性和鲁棒性是目前急需解决的问题。
主要工作和所采用的方法、手段
根据对车道线识别算法的要求,研究几种算法的实时性和鲁棒性,并且用软件编程,仿真算法在道路图像中的检测效果,在众多算法的研究中,提出具有一定实时性和鲁棒性的识别算法。并用语言实现该算法,得到仿真结果。
在算法选定中,通过对比实验仿真的结果,可以看出用彩色通道提取法灰度化道路图像更能增强车道标记线的白色部分,融合沥青路面区域信息和车道线边缘信息获取车道线像素点,具有克服虚假边界的优点。最后,通过简化车道线模型,提出直线型车道线模型假设,并用hough变换及其改进算法和中值截距法提取车道线,分别通过MATLAB仿真得到实验结果。
预期达到的结果
通过对算法的研究,预期提出的最优算法在结构化道路的情况下能够检测出车道线,同时具有一定的实时性和鲁棒性 时 间 2009 年月日 hough变换及其改进算法和中值截距算法提取车道线,并用MATLAB对算法进行了仿真,得出了改进后的hough变换在车道线检测上具有较好的实时性和鲁棒性的结论。
关键词:图像预处理 彩色通道提取 区域生长 改进的hough变换
Abstract
Recent the research on Visual navigation systems have been developed in many countries. And a lane-detection system is an important component of many visual navigation systems. There has been active research on the lane-detection, because it closely relates to the safety of intelligent vehicles. In this thesis, the road positioning algorithms based on image are researched. At first, the current algorithms of image preprocessing are analyzed. By the specific requirements of the image processing in this thesis, the appropriate algorithm is chosen. For example, in order to get a greylevel image from a colour one, we introduced a method called getting from multicolor channel. As the result, the white line on the road image can be intensified stronger than the other ways. Then given the features of road line, a difference cyclostyle is defined to extract the edge. At the same, in order to improve the real-time performance of roads and anti-jamming capability, regional growth ways is introduced, through it we can chose a proper seed to get a regional road image. Then edge
显示全部