2021-2021学年高中数学《正弦、余弦函数的图象》教案1-新人教A必修5.doc
2019-2020学年高中数学《正弦、余弦函数的图象》教案(1)新人教A版必修5
教学目的:
知识目标:(1)利用单位圆中的三角函数线作出的图象,明确图象的形状;
(2)根据关系,作出的图象;
(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;
能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;
(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;
德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神;
教学重点:用单位圆中的正弦线作正弦函数的图象;
教学难点:作余弦函数的图象,周期性;
授课类型:新授课
教学模式:启发、诱导发现教学.
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.弧度定义:()为1弧度的角。
2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)
P与原点的距离r()
则比值叫做的正弦记作:
比值叫做的余弦记作:
3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有
,
向线段()叫做角α的正弦线,有向线段()叫做角α的余弦线.
二、导学:
1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.
(1)怎样做函数y=sinx的图象
(2)怎样做余弦函数y=cosx的图象
正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.
2.用五点法作正弦函数和余弦函数的简图(描点法):
正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:
()()()()()
余弦函数y=cosxx?[0,2?]的五个点关键是
()()()()()
只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.
优点是方便,缺点是精确度不高,熟练后尚可以
3、讲解范例:
例1作下列函数的简图
(1)y=1+sinx,x∈[0,2π],(2)y=|sinx|,(3)y=sin|x|
例2分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:
三、巩固与练习
四、小结:本节课学习了以下内容:
1.正弦、余弦曲线几何画法和五点法
2.注意与诱导公式,三角函数线的知识的联系
五、课后作业:作业:
补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx的图象
2.分别在[-4?,4?]内作出y=sinx和y=cosx的图象
3.用五点法作出y=cosx,x?[0,2?]的图象
六、课后反思: