基于模糊均值聚类和亮度均衡的钢管自适应计数.PDF
文本预览下载声明
47, 0 11001 (20 10) 2010 中国激光杂志社
doi: 10.3788/lop47.011001
于模糊均值聚类和亮度均衡的钢管自适应计数
刘景波 金炜东
(西南交通大学电气工程学院, 四川 成都 610031)
摘要 针对现有计数方法的缺陷,根据钢管截面区域与背景图像存在较大亮度差异的特点,提出了基于模糊 C 均
值(FCM)聚类和亮度均衡的钢管自适应计数方法。用亮度均衡等方法对钢管图像进行预处理,降低图像中高光和阴
影等的不良影响;利用FCM 聚类方法自适应分割图像;对二值图像进行连通区域标记,获取区域几何特征;利用
统计学方法和FCM 聚类方法剔除非钢管截面区域,统计计数。实验表明,新方法不仅计数速度快,而且计数精度
高,同时具有对不同环境条件的自适应性。
关键词 图像处理;钢管计数;模糊C 均值聚类;亮度均衡
中图分类号 TP391.4 1 OCIS 100.0110 100.4993 文献标识码 A
Steel Pipe Adaptive Counting Based on Fuzzy Means
Clustering and Intensity Balancing
Liu Jingbo Jin Weidong
(School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China)
Abstract Aiming at the shortcoming of existing counting methods, a new method based on fuzzy C-means (FCM)
clustering and intensity balancing is proposed for steel pipe adaptive counting, according to that there is a big luminance
difference between pipe cross-section area and background image. Firstly, the image of the steel pipe is adjusted and
balanced for reducing the adverse effect of highlights and shadows in the image; secondly, the image is segmented by using
FCM clustering; thirdly, the binary image is labeled with connected components label to obtain geometrical characteristic
of region; lastly, FCM clustering is re-used with statistics to remove the interference region of the binary image, and the
accurate number of the steel pipe is obtained. Experimental results show that the accuracy and adaptability of counting are
raised by the new method.
Key words image processing; steel pipe counting; fuzzy C-means clustering; intensity balancing
1 引 言
显示全部