文档详情

泰安市中考数学二次函数压轴题集锦.doc

发布:2019-11-27约1.22千字共6页下载文档
文本预览下载声明
中考精英精品精练之专题精析 PAGE 1 泰安市中考数学二次函数压轴题集锦 (2018)24.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接. (1)求二次函数的表达式; (2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值; (3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有 (2017)28.如图,是将抛物线平移后得到的抛物线,其对称轴为,与轴的一个交点为,另一交点为,与轴交点为. (1)求抛物线的函数表达式; (2)若点为抛物线上一点,且,求点的坐标; (3)点是抛物线上一点,点是一次函数的图象上一点,若四边形为平行四边形,这样的点是否存在?若存在,分别求出点的坐标,若不存在,说明理由. 点的坐标,若不存在请说明理由. (2016)28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B. (1)求二次函数y=ax2+bx+c的表达式; (2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积; (3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.   (2015)29. 如图,抛物线y=ax2+bx+c与x轴的一交点为A(-6,0),与y轴的交点为C(0,3),且经过点G(-2,3).(1)求抛物线的表达式; (2)点P是线段OA上一动点,过P作平行于y轴的直线与AC交于点Q,设△CDQ的面积为S,求S的最大值; (3)若点B是抛物线与x轴的另一交点,点D、M在线段AB上,点N在线段AC上,∠DCB = ∠CDB,CD是MN的垂直平分线,求点M的坐标. (2014)29.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣0.5x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. (2013) 29.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,B点的坐标为(2,0) (1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
显示全部
相似文档