文档详情

人教版高中数学必修三教案(全套).docx

发布:2018-09-20约5.45万字共101页下载文档
文本预览下载声明
PAGE \* MERGEFORMAT PAGE \* MERGEFORMAT 1 第一章算法初步 1.1.1算法的概念 一、教学目标: 1、知识与技能:(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用Scilab求解方程组。 2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。 3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。 二、重点与难点: 重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。 难点:把自然语言转化为算法语言。 三、学法与教学用具: 学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。 2、要使算法尽量简单、步骤尽量少。 3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。 教学用具:电脑,计算器,图形计算器 四、教学设想: 创设情境: 算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。 探索研究 算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。 广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。 例题分析: 例1 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。 算法分析:根据质数的定义,很容易设计出下面的步骤: 第一步:判断n是否等于2,若n=2,则n是质数;若n2,则执行第二步。 第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。 这是判断一个大于1的整数n是否为质数的最基本算法。 例2 用二分法设计一个求议程x2–2=0的近似根的算法。 算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤: 第一步:令f(x)=x2–2。因为f(1)0,f(2)0,所以设x1=1,x2=2。 第二步:令m=(x1+x2)/2,判断f(m)是否为0,若则,则m为所长;若否,则继续判断f(x1)·f(m)大于0还是小于0。 第三步:若f(x1)·f(m)0,则令x1=m;否则,令x2=m。 第四步:判断|x1–x2|0.005是否成立?若是,则x1、x2之间的任意取值均为满足条件的近似根;若否,则返回第二步。 小结:算法具有以下特性:(1)有穷性;(2)确定性;(3)顺序性;(4)不惟一性;(5)普遍性 典例剖析: 1、基本概念题 x-2y=-1,① 例3 写出解二元一次方程组 的算法 2x+y=1② 解:第一步,②-①×2得5y=3;③ 第二步,解③得y=3/5; 第三步,将y=3/5代入①,得x=1/5 学生做一做:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善? 老师评一评:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法。下面写出求方程组的解的算法: 第一步:②×A1-①×A2,得(A1B2-A2B1)y+A1C2-A2C1=0;③ 第二步:解③,得; 第三步:将代入①,得。 此时我们得到了二元一次方程组的
显示全部
相似文档