马萨诸塞州理工学院电气工程与计算机科学系.pdf
MassachusettsInstituteofTechnology
DepartmentofElectricalEngineeringComputerScience
6.041/6.431:ProbabilisticSystemsAnalysis
(Fall2010)
Tutorial3:Solutions
1.IngeneralwehavethatE[aX+bY+c]=aE[X]+bE[Y]+c.Therefore,
E[Z]=2·E[X]−3·E[Y].
Forthecaseoftrandomvariables,wehavethatifZ=a·X+b·Y,then
22
var(Z)=a·var(X)+b·var(Y).
Therefore,var(Z)=4·var(X)+9·var(Y).
2.Seeonlinesolutions.
3.(a)Wecanfindcknowingthattheprobabilityoftheentiresamplespacemustequal1.
33
1=XXpX,Y(x,y)
x=1y=1
=c+c+2c+2c+4c+3c+c+6c
=20c
1
Therefore,c=20.
(b)pY(2)=P3pX,Y(x,2)=2c+0+4c=6c=3.
x=110
(c)Z=YX2
E[Z|Y=2]=E[YX2|Y=2]
=E[2X2|Y=2]
=2E[X2|Y=2]
pX,Y(x,2)
pX|Y(x|2)=pY(2).
Therefore,
1/101