2016届高三物理大一轮复习教学讲义:第九章 电磁感应 第四节.doc.doc
文本预览下载声明
第四节 电磁感应中的动力学和能量问题
一、电磁感应现象中的动力学问题
1.安培力的大小
?F=
2.安培力的方向
(1)先用右手定则判定感应电流方向,再用左手定则判定安培力方向.
(2)根据楞次定律,安培力的方向一定和导体切割磁感线运动方向相反.
1.(多选)(2014·高考四川卷)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为0.2 kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30° 角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4-0.2t) T,图示磁场方向为正方向.框、挡板和杆不计形变.则( )
A.t=1 s时,金属杆中感应电流方向从C到D
B.t=3 s时,金属杆中感应电流方向从D到C
C.t=1 s时,金属杆对挡板P的压力大小为0.1 N
D.t=3 s时,金属杆对挡板H的压力大小为0.2 N
答案:AC
二、电磁感应中的能量转化
1.过程分析
(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.
(2)感应电流在磁场中受安培力,若安培力做负功,则其他形式的能转化为电能;若安培力做正功,则电能转化为其他形式的能.
(3)当感应电流通过用电器时,电能转化为其他形式的能.
2.安培力做功和电能变化的对应关系
“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;安培力做多少功,就有多少电能转化为其他形式的能.
2.(单选)如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于( )
A.棒的机械能增加量
B.棒的动能增加量
C.棒的重力势能增加量
D.电阻R上放出的热量
答案:A
考点一 电磁感应中的动力学问题分析
1.导体的平衡态——静止状态或匀速直线运动状态.
处理方法:根据平衡条件(合外力等于零)列式分析.
2.导体的非平衡态——加速度不为零.
处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.
(2014·高考江苏卷)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为 L,长为3d,导轨平面与水平面的夹角为 θ,在导轨的中部刷有一段长为 d 的薄绝缘涂层.匀强磁场的磁感应强度大小为 B,方向与导轨平面垂直.质量为m 的导体棒从导轨的顶端由静止释放, 在滑上涂层之前已经做匀速运动, 并一直匀速滑到导轨底端. 导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为 R,其他部分的电阻均不计,重力加速度为g.求:
(1)导体棒与涂层间的动摩擦因数μ;
(2)导体棒匀速运动的速度大小 v;
(3)整个运动过程中,电阻产生的焦耳热Q.
[解析] (1)在绝缘涂层上
导体棒受力平衡:mgsin θ=μmgcos θ
解得导体棒与涂层间的动摩擦因数μ=tan θ.
(2)在光滑导轨上
感应电动势:E=BLv 感应电流:I=
安培力:F安=BIL 受力平衡的条件是:F安=mgsin θ
解得导体棒匀速运动的速度v=.
(3)摩擦生热:Qf=μmgdcos θ
根据能量守恒定律知:3mgdsin θ=Q+Qf+mv2
解得电阻产生的焦耳热Q=2mgdsin θ-.
[答案] (1)tan θ (2)
(3)2mgdsin θ-
[总结提升] 分析电磁感应中的动力学问题的一般思路
(1)先进行“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r;
(2)再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;
(3)然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;
(4)最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.
1.(单选)(2013·高考新课标全国卷Ⅱ)如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动.t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v-t图象中,可能正确描述上述过程的是( )
解析:选D.导体切割磁感线时产生感应电流,同时产生安培力阻碍导体运动,利用法拉第电磁感应定律、安培力公式及牛顿第二定律可确定线框在磁场中的运动特点.
线框进入和离开磁场时,安培力的作用都是阻碍线
显示全部