cvpr18-neural kinematic networks for unsupervised motion用于无监督运动重定向神网络.pdf
NeuralKinematicNetworksforUnsupervisedMotionRetargetting
RubenVillegas1,*JimeiYang2DuyguCeylan2HonglakLee1,3
1UniversityofMichigan,AnnArbor
2AdobeResearch
3Brain
Time
n
o
i
t
o
M
t
u
p
n
I
1
r
e
t
c
a
r
a
h
C
t
e
g
r
a
T
2
r
e
t
c
a
r
a
h
C
t
e
g
r
a
T
Figure1:Ourend-to-endmethodretargetsagiveninputmotion(toprow),tonewcharacterswithdifferentbonelengthsand
proportions,(middleandbottomrow).Thetargetcharactersareneverseenperformingtheinputmotionduringtraining.
1.Introduction
Imitationisanimportantlearningschemeforagentsto
Weproposearecurrentneuralnetworkarchitecturewithacquiremotorcontrolskills[32].Itisoftenformulatedas
aForwardKinematicslayerandcycleconsistencybasedlearningfromexpertdemonstrationswithaccesstosample
adversarialtrainingobjectiveforunsupervisedmotionre-trajectoriesofstate-actionpairs[3,15].However,thisfirst-
targetting.Ournetworkcapturesthehigh-levelpropertiesimitationassumptionmaynotalwaysholdsince1)
ofaninputmotionbytheforwardkinematicslayer,and