文档详情

FDTD及其并行算法在粗糙面和目标复合电磁散射中的应用的开题报告.pdf

发布:2024-10-30约小于1千字共2页下载文档
文本预览下载声明

FDTD及其并行算法在粗糙面和目标复合电磁散射中

的应用的开题报告

尊敬的评委老师,您好!

本文要探讨的是FDTD(时域有限差分法)及其并行算法在粗糙面和

目标复合电磁散射中的应用。

时域有限差分法是一种计算电磁波传播的数值方法,它的优点是精

度高、适用范围广、易于实现,被广泛应用于电磁场计算和散射问题求

解。然而,FDTD也存在着实现复杂、计算量大、耗时长等问题,为了提

高计算效率,FDTD的并行算法应运而生,如基于MPI(消息传递接口)

的并行计算,以及基于GPU(图形处理器)的并行计算等。

近年来,随着科技的不断进步,越来越多的应用场景需要考虑电磁

波与不规则表面或目标的交互。比如雷达测量和成像等领域中,存在于

目标表面、内部或附近的复杂结构(如腐蚀、裂纹等)会对电磁波的散

射产生影响。因此,在研究电磁波-复杂结构的交互过程时,需要先对散

射问题进行数值模拟,以预测和优化电磁场的传播和散射。

本文的研究目的是在FDTD及其并行算法的基础上,探究电磁波在

粗糙面和目标复合体中的散射规律,并分析不规则结构对电磁波散射的

影响。具体地,本文将重点研究以下内容:

1.FDTD及其并行计算算法的原理和基本实现方法,为后续散射问

题的求解打下基础;

2.粗糙表面散射问题的模拟和分析,研究不同粗糙度下电磁波的反

射和漫反射特性;

3.目标散射问题的模拟和分析,考虑不同形状、大小、材料、朝向

等因素对散射特性的影响,探究复合结构的散射规律;

4.以上两个问题的综合研究,研究电磁波与复杂表面或目标的交互

过程。

本文的意义在于深入挖掘FDTD及其并行算法在复杂电磁场问题中

的应用,尤其是在散射问题中,为相关领域的研究提供参考和借鉴。同

时,本文也将为电磁场和计算物理等领域的研究或工程应用提供一些实

用的思路和方案。

以上就是本文的开题报告,欢迎评委老师审阅指正!

显示全部
相似文档