文档详情

红霉素的发酵及提取工艺.ppt

发布:2025-03-11约6.57千字共10页下载文档
文本预览下载声明

红霉素的发酵工艺3)培养条件:(1)温度:红霉素发酵采用31℃恒温培养。温度过高时,会产生红霉素C,红霉素C与红霉素A结构相似,但毒性却是红霉素A的两倍,(2)pH:整个发酵过程中pH维持在6.6~7.2,菌丝生长良好,发酵水平稳定。红色糖多孢菌最适生长pH为6.7~7.0,而红霉素合成的最适pH为6.7~6.9。(3)通气和搅拌:红霉素发酵为好氧发酵。一般地,发酵最初12h,通气量保持在0.4vvm(每分钟通气量与罐体实际料液体积的比值),12h后到放罐可控制在0.8~1.0vvm。搅拌速度不宜太快,容易损伤菌丝,不利于发酵补料:发酵过程中还原糖浓度控制在1.0%~1.4%范围内,每隔6补加葡萄糖一次,直到放罐前1218停止补糖。40后补加有机氮源,每日34次,若发酵罐的黏度上升则增加补料量,反之则减少,放罐前24停止补氮。发酵后期添加氨水可以提高发酵单位,减少脱水红霉素的形成,改善产品质量,补加硫酸镁可以改善菌丝生长状况,提高发酵单位。前提一般在24后补加1发酵黏度的控制:发酵液的黏度一定程度上反映了菌丝生长浓度,并对红霉素组分的比例有直接的影响2红霉素的发酵工艺接种菌体浓度对发酵的影响及控制发酵菌种接种菌龄必须掌握恰当时机,接种过早或过晚都将不利于发酵的进行。发酵接入菌种太年轻,前期生长缓慢,产物开始形成时间推迟,整个发酵周期延长;如果太老,菌量虽多,却导致生产能力下降,菌体过早自溶。发酵接种量较大且保持在合适的浓度,则缩短细菌生长期,使产物合成时间提前;但是如果接种量过大,超出适宜值,则生长过快,物料黏度增加,导致溶氧不足,最终影响产物合成碳源对发酵的影响及其控制按菌体利用快慢而言,分为迅速利用的碳源和缓慢利用的碳源。前者(如葡萄糖)能较迅速地参与代谢、合成菌体和产生能量,并产生分解代谢产物,因此有利于菌体生长,但有的分解代谢产物对产物的合成可能产生阻遏作用;后者(如乳糖)为菌体缓慢利用,有利于延长代谢产物的合成,特别有利于延长抗生素的生产期,也为许多微生物药物的发酵所采用。氮源对发酵的影响及其控制氮源有无机氮源和有机氮源两类。如谷氨酸发酵,当NH4+供应不足时,就促使形成α-酮戊二酸;过量的NH4+,反而促使谷氨酸转变成谷氨酰胺。发酵培养基一般是选用含有快速利用和慢速利用的混合氮源。如氨基酸发酵用铵盐(硫酸铵或醋酸铵)和麸皮水解液、玉米浆。补加有机氮源根据产生菌的代谢情况,可在发酵过程中添加某些具有调节生长代谢作用的有机氮源,如酵母粉、玉米浆、尿素等。补加无机氮源补加氨水或硫酸铵是工业上的常用方法。氨水既可作为无机氮源,又可调节pH值。在抗生素发酵工业中,通氨是提高发酵产量的有效措施。当pH值偏高而又需补氮时,就可补加生理酸性物质的硫酸铵,以达到提高氮含量和调节pH值的双重目的。010302磷酸盐对发酵的影响及其控制1磷是微生物菌体生长繁殖所必需的成分,也是合成代谢产物所必需的,磷酸盐浓度的控制,对于初级代谢来说,要求不如次级代谢那么严格。对抗生素发酵来说,常常是采用生长亚适量(对菌体生长不是最适合但又不影响生长的量)的磷酸盐浓度,其最适浓度取决于菌种特性、培养条件、培养基组成和来源等因素。2工艺控制3比如溶氧控制结合,发酵时,在数1之前我们控制比较小的通气量(目前我们的发酵控制点在发酵6小时为延迟期),一来节约成本,二来适应地衣芽孢杆菌的发酵需要;而到了数1-3的时期我们采取高通气量来配合地衣的生产,数3以后又要降低通风量。在发酵地衣芽孢杆菌时,形成芽孢期对整个的发酵生产至关重要,很大程度上决定了产量和收率,经过多次实验和总结我们找出了依pH为指标的关键控制点。应该说这个小小的细节对我们整个产品的提高起到了很好的保障作用4红霉素的提取工艺在碱性条件下,红霉素一游离碱的形式存在,可容于有机溶剂中。在碱性的条件下,可与一些酸形成盐。目前,国内外主要采用有机溶剂萃取或大孔树脂吸附进行提取。1)发酵液的预处理:向发酵液中加入碱式氯化铝沉淀蛋白质,促进菌丝结团加快过滤。2)有机溶剂萃取:(1)防止和去乳化:用酸性的十二烷基磺酸钠,在碱性条件下留在水相中,使产品色泽有所改进。(2)pH:发酵液碱化时控制pH在10±0.4的范围内。(3)温度

显示全部
相似文档