文档详情

第五章对流换热的理论基础.doc

发布:2017-08-26约1.62千字共2页下载文档
文本预览下载声明
第5章 《对流换热的理论基础》思考题 请分析外部流动对流换热计算时,局部表面传热系数hx与平均表面传热系数 hm 之间的关系式:       或 (1) 成立的条件是什么?同样的式子,对Nux和Num是否成立?为什么? 或     (2) 书中(5-1-3)式: , 为什么要求表面与流体的温差必须恒定?如果不恒定会出现什么问题? 试分析牛顿冷却公式中的温度差。 流动入口段长度和热入口段长度之间具有什么样的关系? 流体在圆管内测试段1和2 之间流动,壁面保持恒热流密度。(a)流动和换热均已达到充分发展;(b) 尚在入口段内。请:(1) 就上述两种情形画出壁温和流体平均温度的沿程变化趋势;(2)若两种情况的入口平均温度及热流密度都相同,流体出口温度哪个高?壁温哪个高?为什么? 对于恒壁温的管内对流换热,流体沿全管长的平均温度能否写作:(其中“–”用于tw tf,“+”用于tw tf),其中流体与管壁的平均温差是,且有(t( = tw – tf1,和 (t(( = tw – tf2 。 请说明为什么对热边界层厚度定义不能象对流动边界层那样表达成:“流体温度达到来流温度99%处的离壁距离”? 试从普朗特边界层的基本观点出发,解释为什么边界层基本方程对平板前缘不适用? 请参照层流边界层速度分布积分解(附录1.2),分析并判断在沿平板的x 方向上,壁面上的速度梯度是如何变化的? 管内对流换热达到充分发展的基本依据是什么?还可以根据什么参数来判断换热是否已经达到了充分发展? 层流时,可以用什么参数来判断速度边界层与热边界层哪个发展得更快?为什么?湍流时呢? 对无界流动(湍流或层流),若定性温度为40℃,试在相同位置、相同流速下比较水与空气表面传热系数的相对大小(概略值)。 有人说,强迫流动换热时,边界层动量方程和能量方程是非耦合的,而自然对流时是耦合的。你认为这种说法是否准确? 层流外部流动边界层方程积分解的“近似性”主要表现在哪里? 你觉得作为一种近似解法,讨论边界层微分方程积分解有什么意义?” 雷诺类比中采用了哪些假设? 定性温度实际上只是对对流换热中流体平均温度的一种近似处理方法,它并不是严格意义上的“流体平均温度”。那么用特征数方程计算表面传热系数时,为什么各项物性均取为定性温度下的数值? St数的定义为St = h /(cu( ,其中并不显含特征尺寸。这一点与Nu不同,但是为什么St和Nu一样也有局部值与平均值之分? 查看如下附图所表示的管内速度场,你认为图(a)与图(b)哪一对速度场可能是相似的?或者两者都可能相似?请说明你的理由。 一位同学说:“雷诺数就是惯性力与粘性力的比值。”这句话是否正确?为什么? 能否说:“Pr数即速度边界层厚度与温度边界层厚度的比值”?为什么? 从特征数关联式 能否得出高Pr 流体换热的Nu数比低Pr数流体更高的结论? **一本教科书上讲,“类比律适用于层流、紊流以致分离流(绕流脱体)。”[1] 另一本书则认为:“雷诺比拟只有在满足下述条件时才是正确的:(1) Pr=1;(2) 阻力实际上完全是粘性力。… 如果阻力不全是粘性力,则式Cf ((Fd /Ac)/((u2( / 2) 就不适用,雷诺比拟也就不正确了。(其中Fd为阻力,Ac是流体与表面的接触面积)。满足没有形状阻力这一要求的流动状况是在密闭管道中的流动或不发生边界层脱体情况的任何外部流动。”[2] 显然以上两种说法互相抵触。你的看法呢? [1] 章熙民等. 传热学(新一版). 北京:中国建筑工业出版社,1993. 120 [2] 威尔蒂 J R. 工程传热学. 任泽霈,罗棣庵译. 北京:人民教育出版社,1982,177~179
显示全部
相似文档