山东省济钢高中2025届高三第二次模拟考试数学试卷含解析.doc
山东省济钢高中2025届高三第二次模拟考试数学试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()
A. B. C. D.
2.若为虚数单位,则复数,则在复平面内对应的点位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.在中,,,,为的外心,若,,,则()
A. B. C. D.
4.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是
A. B.
C. D.
5.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为()
A. B.
C. D.
6.不等式组表示的平面区域为,则()
A., B.,
C., D.,
7.设函数,则使得成立的的取值范围是().
A. B.
C. D.
8.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()
A. B. C.1 D.
9.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()
A. B.
C. D.
10.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为()
A. B.
C. D.
11.已知,,分别是三个内角,,的对边,,则()
A. B. C. D.
12.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量=(-4,3),=(6,m),且,则m=__________.
14.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________.
15.不等式对于定义域内的任意恒成立,则的取值范围为__________.
16.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.
(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.
18.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.
(1)求证:四边形ACC1A1为矩形;
(2)求二面角E-B1C-A1的平面角的余弦值.
19.(12分)若函数为奇函数,且时有极小值.
(1)求实数的值与实数的取值范围;
(2)若恒成立,求实数的取值范围.
20.(12分)已知函数()的图象在处的切线为(为自然对数的底数)
(1)求的值;
(2)若,且对任意恒成立,求的最大值.
21.(12分)已知函数.
(1)求不等式的解集;
(2)若不等式对恒成立,求实数的取值范围.
22.(10分)设函数,,.
(1)求函数的单调区间;
(2)若函数有两个零点,().
(i)求的取值范围;
(ii)求证:随着的增大而增大.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.
【详解】
设,,
所以,,,
所以.
故选:D
【点睛】
本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.
2、B
【解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.
【详解】
,
,
则在复平面内对应的点的坐标为,位于第二象限.
故选:B
【点睛】
本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.
3、B
【解析】
首先根据题中条件和三角形中几何关系求出,,即可求出的值.
【详