高效数控恒流源.docx
基于UC3525的高效数控恒流源的设计
摘要:研究了一种适合宽负载条件运行的有限双极性控制方法并配合饱和电感和隔直电容实现ZVZCSPWM的全桥变换器,分析了其工作过程及主开关器件实现ZVZCS的约束条件。最后通过具体的功率实验.验证了该控制方法在较宽负载范围条件下实现软开关的能力。
关键词:有限双极性控制;零电压零电流开关;饱和电感;全桥变换器
引言
全桥移相ZVS变换器近年来得到了广泛关注,在中大功率的通讯电源和电力操作电源中得到广泛的应用。然而,这种控制方法有以下几个明显的缺点。
滞后臂开关管在轻载下将失去零电压开关功能;
为了实现滞后臂的ZVS,必须在电路中串联电感,这会引起占空比丢失,增人了原边电流定额;
原边存在较大环流,增加了系统通态损耗。
为了解决这些问题,人们针对IGBT拖尾电流大的特点义提出了全桥移相ZVZCS变换器。其主要思路是超前臂实现ZVS,滞后臂实现ZCS,从而从根本上解决了原先全桥移相ZVS变换器中滞后臂零电压开关困难的问题。由于不需要外加电感,占空比丢失问题随之解决,环流也大大减小。实现滞后臂的ZCS目前主要有以下几种办法。
副边有源箝位的ZVZCS方法,但增加了成本,并由于需要复杂的隔离驱动而降低了可靠性;
副边无源箝位和原边无源箝位;
利用IGBT的反向雪崩击穿电压;
(4)原边串联饱和电感和隔直阻断电容。
但移相控制本身还有一个难以克服的缺点,即死区时间不好调整。当负载较重时,由于环流大,超前臂功率管上并联的电容放电较快,因此实现零电压导通比较容易,但当负载较轻时,超前臂功率管上并联的电容放电很慢,超前桥臂的开关管必须延时很长时间才能实现ZVS导通。传统的移相控制很难调整这个死区时间。
本文研究了一种名为有限双极性控制的控制方法,配合上面介绍的原边串联饱和电感和隔直电容的ZVZCSPWM全桥拓扑,可以在很宽的负载范围内实现超前臂的ZVS和滞后臂的ZCS。
1ZVZCSPWM全桥电路有限双极性控制原理分析
1.1电路拓扑
有限双极性控制ZVZCSPWM全桥电路拓扑如图1所示。S1?S4共4个功率管(内带续流二极管)组成一个全桥电路。其中,S1、S2组成超前桥臂,两端分别并联吸收电容C1、C2、S3、S4组成滞后桥臂;Cb为隔直电容,Ls为饱和电感。
图】主屯略原理图
1.2工作原理
改进传统的移相PWM电路,采用有限双极性的控制方法,超前臂与滞后臂同时开通,并且在超前臂与滞后臂之间串联一个隔直电容Cb以及饱和电感Ls。饱和电感相当于一个开关,有电流的时候电感饱和,相当于短路;没有电流或电流很小时,有较大电感。利用隔直电容在环流期间加速环流衰减,使得滞后臂实现零电流关断,并且利用饱和电感Ls阻止LC振荡电流反向(反向电流不足以使饱和电感饱和,其电感值很大);在滞后臂开通时.由于饱和电感处于不饱和状态,电流上升慢,实现零电流开通。图2所示即为全桥有限双极性控制时序及各主要变量响应图。其中,vgsl?vgs4为S1?S4管的驱动波形,Uab为ab两点间电压,ip为原边电流。
1.2.1模态1 功率传输
在t0?t1时刻,S1和S4导通,此时电流ip一方面通过变压器原边将电能传输到负载,另一方面给阻断电容cb充电,Ls处于饱和状态,电容Cb电压线性增加。Ip=I0/n恒定不变。如图3所示。
图3模态】电流流向
1?2.2模态2 超前臂的零电压关断
超前臂S1于t1时刻关断,原边电流ip从S1中转移到C1、C2支路中,C1充电,C2放电。因为C1电压不能突变,开始时为零,实现S1的零电压关断;饱和电抗器流过电流,尚未退出饱和状态,阻抗为零。当Uc2降到零,二极管D2续流,t2时刻S2上的电压为零,为以后S2的零电压开通做好准备。如图4所示。
1.2.3模态3 b阻断环流
t2时刻,ip通过S4和D2续流,阻断电容Cb的电压上升到最大Ucpb。饱和电感Ls尚未退出饱和状态。由于变压器原边的电压为零,原边电流小于副边电流,副边电感使整流二极管D5?D8均处于正向导通阶段,变压器原、副边短路。Ucb全部加在变压器漏感上。在阻断电容Cb的作用下,原边电流迅速下降。如图5所示。
1.2.4模态4—后臂零电压零电流关断
t3时ip下降为零时,在Ucb作用下ip反向变化,由于Ls退出饱和状态,呈现大阻抗,所以阻断电容电压不变,S4仍然导通,但是没有电流流过。t4时滞后臂S4零电压零电流自然关断。此叫不对负载传输功率。如图6所示。
陶
陶6模态4电流流向
1.2.5模态5——前臂零电压零电流开通、滞后臂零电流开通
t5时S2、S3同时开通。在导通的瞬间,由于Ls不饱和,其阻抗很大,电流上升速度缓慢。S2、S3处于零电流导通状态