文档详情

直流可逆调速系统.ppt

发布:2025-03-30约1.64万字共119页下载文档
文本预览下载声明

1.逻辑控制的无环流可逆系统本节将着重讨论逻辑控制的无环流可逆系统的系统结构、控制原理和电路设计。(1)系统的组成逻辑控制的无环流可逆调速系统(以下简称“逻辑无环流系统”)的原理框图示于下图该系统结构的特点为:?逻辑控制无环流系统结构图4-11逻辑控制无环流可逆调速系统原理框图ASRDLC-1TAVRVFGTR2ACRMTGGTF1ACR+U*nUn-UiU*iUcfUblfUblrUcrU*i+UiU*iUi0LdAR----+?系统结构的特点主电路采用两组晶闸管装置反并联线路;由于没有环流,不用设置环流电抗器;仍保留平波电抗器Ld,以保证稳定运行时电流波形连续;控制系统采用转速、电流双闭环方案;电流环分设两个电流调节器,1ACR用来控制正组触发装置GTF,2ACR控制反组触发装置GTR;?系统结构的特点(续)1ACR的给定信号经反号器AR作为2ACR的给定信号,因此电流反馈信号的极性不需要变化,可以采用不反映极性的电流检测方法。为了保证不出现环流,设置了无环逻辑控制环节DLC,这是系统中的关键环节。它按照系统的工作状态,指挥系统进行正、反组的自动切换,其输出信号Ublf用来控制正组触发脉冲的封锁或开放,Ublr用来控制反组触发脉冲的封锁或开放。ASRDLC-1TAVRVFGTR2ACRMTGGTF1ACR+U*nUn-UiU*iUcfUblfUblrUcrU*i+UiU*iUi0LdAR(2)工作原理正向运行:+-++--+-++----ASRDLC-1TAVRVFGTR2ACRMTGGTF1ACR+U*nUn-UiU*iUcfUblfUblrUcrU*i+UiU*iUi0LdAR反向运行----++++++----2.无环流逻辑控制环节(1)逻辑控制环节的设计要求DLC的输入要求:分析V-M系统四象限运行的特性,有如下共同特征:正向运行和反向制动时,电动机转矩方向为正,即电流为正;反向运行和正向制动时,电动机转矩方向为负,即电流为负。因此,应选择转矩信号作为DLC的输入信号。由于ACR的输出信号正好代表了转矩方向,即有:正向运行和反向制动时,U*i为正;反向运行和正向制动时,U*i为负。又因为U*I极性的变化只表明系统转矩反向的意图,转矩极性的真正变换还要滞后一段时间。只有在实际电流过零时,才开始反向,因此,需要检测零电流信号作为DLC的另一个输入信号。DLC的输出要求正向运行:VF整流,开放VF,封锁VR;反向制动:VF逆变,开放VF,封锁VR;反向运行:VR整流,开放VR,封锁VF;正向制动:VR逆变,开放VR,封锁VF;因此,DLC的输出有两种状态:VF开放—Ublf=1,VF封锁—Ublf=0;VR开放—Ublr=1,VR封锁—Ublr=0。?DLC的内部逻辑要求对输入信号进行转换,将模拟量转换为开关量;根据输入信号,做出正确的逻辑判断;为保证两组晶闸管装置可靠切换,需要有两个延时时间:(1)t1延时——关断等待时间,以确认电流已经过零,而非因电流脉动引起的误信号;(2)t2延时——触发等待时间,以确保被关断的晶闸管已恢复阻断能力,防止其重新导通。具有逻辑连锁保护功能,以保证在任何情况下,两个信号必须是相反的,决不容许两组晶闸管同时开放脉冲,确保主电路没有出现环流的可能。(2)电路总体结构这样,根据上述分析DLC电路应具有如下结构:电平检测逻辑判断延时电路连锁保护Ui0U*iUblfUblr2.逻辑判断环节逻辑判断环节的任务是根据转矩极性鉴别和零电平检测的输出UM和UI状态,正确地判断晶闸管的触发脉冲是否需要进行切换及切换条件是否具备。1.电平检测完成对输入量的模/数转换。3.延时环节用于实现封锁延时t1和开放延时t2。4.联锁保护环节保证2组晶闸管不能同时开放。电平检测包括2个模/数转换器:对转换的称为转矩极性鉴别器转换的称为零电流检测器。对转矩极性鉴别器及其输入—输出特性:零电流检测器及其输入—输出特性除去电平检测部分,DLC控制器的原理图如下图示VD1、VD2、C1、C2起t1的延时作用VD3、VD4、C3、C4起t2的延时

显示全部
相似文档