《鲁教版七年级数学上册复习知识点总结》.doc
文本预览下载声明
天窗教育 设计人:董老师 审核人:张老师
PAGE
PAGE 13
鲁教版初二上数学知识点梳理
第一章 三角形
⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.
_C_B
_
C
_
B
_
A
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;
(2)三角形是一个封闭的图形;
(3)△ABC是三角形ABC的符号标记,单独的△没有意义.
⒉ 三角形的分类:
(1)按边分类:
三角形等腰三角形不等边三角形
三角形
等腰三角形
不等边三角形
底边和腰不相等的等腰三角形
等边三角形
三角形
三角形
直角三象形
斜三角形
锐角三角形
钝角三角形
⒊ 三角形的主要线段的定义:
(1)三角形的中线
三角形中,连结一个顶点和它对边中点的线段.
表示法:1.AD是△ABC的BC上的中线.
2.BD=DC=BC.
注意:①三角形的中线是线段;
②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点;
④中线把三角形分成两个面积相等的三角形.
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
表示法:1.AD是△ABC的∠BAC的平分线.
2.∠1=∠2=∠BAC.
注意:①三角形的角平分线是线段;
②三角形三条角平分线全在三角形的内部;
③三角形三条角平分线交于三角形内部一点;
④用量角器画三角形的角平分线.
(3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.
表示法:1.AD是△ABC的BC上的高线.
2.AD⊥BC于D.
3.∠ADB=∠ADC=90°.
注意:①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;
③三角形三条高所在直线交于一点.
如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.
图7图
图7
图6
图5
4.三角形的三边关系
三角形的任意两边之和大于第三边;任意两边之差小于第三边.
注意:(1)三边关系的依据是:两点之间线段是短;
(2)围成三角形的条件是任意两边之和大于第三边.
5. 三角形的角与角之间的关系:
(1)三角形三个内角的和等于180?;(三角形的内角和定理)
图8(2) 直角三角形的两个锐角互余
图8
6.三角形的稳定性:
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.
注意:(1)三角形具有稳定性;
(2)四边形没有稳定性.
7.三角形全等:
全等形:能够完全重合的图形叫做全等形.
全等三角形:能够完全重合的两个三角形叫做全等三角形.
对应顶点、对应边、对应角:把两个全等的三角形重合到一起.重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.
全等三角形的性质:全等三角形的对应边相等、对应角相等.
三角形全等的判定方法:
1. 三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).
2. 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).
3. 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
4. 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).
三角形全等的应用:测距离
要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的对边相等(AAS)
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)
轴对称
轴对称现象
1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。这条直线叫对称轴。(注意:对称轴是一条直线,不是线段,也不是射线)。
(2)轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径( × ) 直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);
②角的对称轴是它的角平分线( × ) 角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);
③正方形的对角线是正方形的对称轴( × ) 对角线也是线段而不是直线。
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2.
显示全部