第一章蛋白质第二章核酸第三章酶.ppt
文本预览下载声明
◆绪论 ◆第一章 蛋白质 ◆第二章 核 酸 ◆第三章 酶 ◆第四章 维生素 ◆第五章 生物膜 ◆第六章 代谢总论 ◆第七章 生物氧化 ◆第八章 糖代谢 ◆第九章 脂代谢 ◆第十章 蛋白质的酶促降解和氨基酸代谢 ◆第十一章 核酸的酶促降解及核苷酸代谢 ◆第十二章 核酸的生物合成 ◆第十三章 蛋白质的生物合成 第一章 蛋白质化学 一、要点提示 一、一级结构 1、蛋白质是由20种氨基酸组成的。氨基酸性质方面的差别反映了它们侧链的不同。除了甘氨酸没有手性碳以外,其他19种氨基酸都至少含有一个手性碳。 2、氨基酸的侧链可以按照它们的化学结构分为:脂肪族的、芳香族的、含硫的、含醇的、碱性的、酸性的和酰胺类。 3、氨基酸和多肽的酸性和碱性基团的离子状态取决于pH。 4、许多氨基酸具有非极性的侧链,在水溶液中它们倾向于聚集在一起,以减少与水相互作用的面积,这种倾向称为疏水相互作用。 5、茚三酮与脯氨酸反应生成黄色化合物,与其它氨基酸生成的都是紫色化合物。2,4-二硝基氟苯、丹黄酰氯和苯异硫氰酸酯都能与氨基反应。 6、蛋白质中的氨基酸残基是通过肽键连接的,残基的序列称之为蛋白质的一级结构。肽和小的蛋白质可以利用液相或固相合成法合成。 7、可以根据蛋白质溶解度、净电荷、大小以及结合特性上的差异,从生物资源中纯化蛋白质。常用方法包括离子交换层析、凝胶过滤层析、HPLC、SDS、等电聚焦和双向电泳等方法。 8、多肽的氨基酸序列可以通过Edman降解确定。利用蛋白酶和化学试剂有选择地水解,结合Edman降解可确定大的蛋白质的序列。 9、比较蛋白质的一级结构可以揭示进化关系,种属的不同常反映在它们蛋白质的一级结构的差异上。 二、 蛋白质的三维结构 1、蛋白质可以分为纤维蛋白和球蛋白。纤维蛋白一般都不溶于水,有一定的强度,具有简单重复的二级结构元件,在生物体内主要起着结构构件的作用。球蛋白是水溶性的,具有更复杂的三级结构,在一条多肽链中都含有几种类型的二级结构,多肽链折叠紧凑,疏水氨基酸残基一般都位于球蛋白的内部,外形大致呈球状的大分子。 2、多肽链中相邻氨基酸残基通过肽键连接,肽键具有部分双键特性,所以整个肽单位是一个极性的平面结构。由于立体上的限制,肽键的构型大都是反式构型。绕N-Cα和Cα-C键的旋转赋予了多肽链构象上的柔性。 3、蛋白质结构水平分为四级,一级结构指的是氨基酸序列,二级结构是指在局部肽段中相邻氨基酸的空间关系,三级结构是整个多肽链的三维构象,四级结构是指能稳定结合的两条或两条以上多肽链(亚基)的空间关系。蛋白质具有有基因确定的唯一的氨基酸序列,一级结构决定了蛋白质的构象。 4、蛋白质存在几种不同的二级结构,其中包括α-螺旋,β-折叠和转角等。右手α-螺旋是在纤维蛋白和球蛋白中发现的最常见的二级结构。每圈螺旋含有3.6个氨基酸残基,螺距为0.54nm。β-折叠是另外一种常见的二级结构,分为平行和反平行式的,处于β-折叠的多肽链是肽链的一种伸展的状态。 5、在胶原蛋白中还发现存在着另外的螺旋结构。一个胶原分子是由3个左手的多肽链螺旋相互缠绕形成一个右手的超螺旋。链间氢键和通过脯氨酸和赖氨酸残基的修饰形成的共价交联稳定胶原蛋白。6、球蛋白折叠成它的生物活性状态是一个有序、协同的过程,该过程涉及疏水效应、氢键形成、Van der Waals相互作用和离子配对。在细胞内,酶和伴娘蛋白协助折叠。折叠紧凑的球蛋白可以有选择地结合其他分子,例如含有血红素的血红蛋白和肌红蛋白可以结合和释放氧。 7、受到物理和化学处理(破坏次级键)后,蛋白质的三维结构遭到破坏,它的生物活性会丧失,这一现象称之蛋白质变性。某些变性的蛋白质在一定的条件下可以复性,自发地折叠回具有生物活性的天然构象。这也表明一个蛋白质的三级结构是由它的氨基酸序列确定的。8、肌红蛋白是一条含有153个残基的多肽链,这些氨基酸残基折叠成由8个α螺旋组成的紧凑的球状结构。肌红蛋白含有一个血红素辅基,血红素能结合氧,位于蛋白质中疏水的裂隙中。 9、大多数蛋白质中的很多肽段是处于非重复的构象区。这些区域包括用于连接螺旋和折叠的转角和环。二级结构进一步组合又形成超二级结构(或称为基元),超二级结构处于二级结构和三级结构之间。大的球状单位称为功能域,通常都与一种特殊的功能有关。10、血红蛋白是由4条肽链(两个α和两个β链)组成的。每条肽链都类似于肌红蛋白的肽链,
显示全部