文档详情

北师大版九年级上册数学复习知识点及例题.doc

发布:2024-02-12约1.12万字共16页下载文档
文本预览下载声明

数学九年级上册知识点总结

特殊的平行四边形复习

知识点归纳

矩形

菱形

正方形

对边平行且相等

对边平行,四边相等

对边平行,四边相等

四个角都是直角

对角相等

四个角都是直角

对角线

互相平分且相等

互相垂直平分,且每条对角线平分一组对角

互相垂直平分且相等,每条对角线平分一组对角

判定

·有三个角是直角;

·是平行四边形且有一个角是直角;

·是平行四边形且两条对角线相等.

·四边相等的四边形;

·是平行四边形且有一组邻边相等;

·是平行四边形且两条对角线互相垂直。

·是矩形,且有一组邻边相等;

·是菱形,且有一个角是直角。

对称性

既是轴对称图形,又是中心对称图形

一.矩形

矩形定义:有一角是直角的平行四边形叫做矩形.

【强调】矩形(1)是平行四边形;(2)一一个角是直角.

矩形的性质

性质1矩形的四个角都是直角;

性质2矩形的对角线相等,具有平行四边形的所以性质。;

矩形的判定

矩形判定方法1:对角线相等的平行四边形是矩形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等

矩形判定方法2:四个角都是直角的四边形是矩形.

矩形判断方法3:有一个角是直角的平行四边形是矩形。

例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为

例2:菱形具有而矩形不具有的性质是()

A.对角线互相平分;B.四条边都相等;C.对角相等;D.邻角互补

二.菱形

菱形定义:有一组邻边相等的平行四边形叫做菱形.

【强调】菱形(1)是平行四边形;(2)一组邻边相等.

菱形的性质性质1菱形的四条边都相等;

性质2菱形的对角线互相平分,并且每条对角线平分一组对角;

菱形的判定

菱形判定方法1:对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

菱形判定方法2:四边都相等的四边形是菱形.

例1?已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.

求证:∠AFD=∠CBE.

例2已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

例3、如图,在ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F,求证:四边形AFCE是菱形.

例4、已知如图,菱形ABCD中,E是BC上一点,AE、BD交于M,

若AB=AE,∠EAD=2∠BAE。求证:AM=BE。

例5.(10湖南益阳)如图,在菱形ABCD中,∠A=60°,=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.

(1)求线段的长.

6、(2011四川自贡)如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F。请你猜想DE与DF的大小有什么关系?并证明你的猜想

例7、(2011山东烟台)

如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.

(1)求证:△BDE≌△BCF;

(2)判断△BEF的形状,并说明理由;

(3)设△BEF的面积为S,求S的取值范围.

三.正方形

正方形是在平行四边形的前提下定义的,它包含两层意思:

①有一组邻边相等的平行四边形(菱形)

②有一个角是直角的平行四边形(矩形)

正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.

正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

正方形是中心对称图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;

因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:

边:对边平行,四边相等;

角:四个角都是直角;

对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.

注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.

正方形具有矩形的性质,同时又具有菱形的性质.

正方形的判定方法:

(1)有一个角是直角的菱形是正方形;

(2)有一组邻边相等的矩形是正方形.

注意:1、正方形概念的三个要点:

(1)是平行四边形;

(2)有一个角是直角;

(3)有一组邻边相等.

2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.

例1已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F

显示全部
相似文档