文档详情

抛物线与圆.doc

发布:2019-01-12约1.11万字共30页下载文档
文本预览下载声明
试卷第 =page 2 2页,总 =sectionpages 4 4页 试卷第 =page 1 1页,总 =sectionpages 4 4页 1.已知点是抛物线的焦点. (1)求抛物线方程; (2)若点为圆上一动点,直线是圆在点处的切线,直线与抛物线相交于两点(在轴的两侧),求平面图形面积的最小值. 2.如图,已知抛物线上点到焦点的距离为3,直线交抛物线于两点,且满足。圆是以为圆心,为直径的圆. (1)求抛物线和圆的方程; (2)设点为圆上的任意一动点,求当动点到直线的距离最大时的直线方程. 3.己知曲线与x袖交于A,B两点,点P为x轴上方的一个动点,点P与A,B连线的斜率之积为-4 (1)求动点P的轨迹的方程; (2)过点B的直线与,分别交于点M ,Q(均异于点A,B),若以MQ为直径的圆 经过点A,求AMQ的面积. 4.已知焦点在轴,顶点在原点的抛物线经过点P(2,2),以上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值. 5.已知圆过定点,圆心在抛物线上,、为圆与轴的交点. (Ⅰ)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长. (Ⅱ)当圆心在抛物线上运动时,是否为一定值?请证明你的结论. (Ⅲ)当圆心在抛物线上运动时,记,,求的最大值,并求出此时圆的方程. 6.已知如图,抛物线与x轴相交于B(,0)、C(,0) ( 均大于0)两点, 与y轴的正半轴相交于A点. 过A、B、C三点的⊙P与y轴相切于点A,其面积为 . (1)请确定抛物线的解析式; (2)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB?MD的值.(先画出符合题意的示意图再求解). 7.已知抛物线与双曲线有公共焦点.点是曲线C1,C2在第一象限的交点,且. (1)求双曲线交点及另一交点的坐标和点的坐标; (2)求双曲线的方程; (3)以为圆心的圆M与直线相切,圆N:,过点P(1,)作互相垂直且分别与圆M、圆N相交的直线和,设被圆M截得的弦长为s,被圆N截得的弦长为t,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 8.已知⊙O′过定点A(0,p)(p>0),圆心O′在抛物线C:x2=2py(p>0)上运动,MN为圆O′在x轴上所截得的弦. (1)当O′点运动时,|MN|是否有变化?并证明你的结论; (2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O′的位置关系,并说明理由. 9.已知曲线上的点到点的距离比它到直线的距离小2. (1)求曲线的方程; (2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论. 10.已知抛物线C:的焦点为F,直线与y轴的交点为P,与C的交点为Q,且. (1)求C的方程; (2)过F的直线与C相交于A,B两点,若AB的垂直平分线与C相较于M,N两点,且A,M,B,N四点在同一圆上,求的方程. 11.已知定点F(0,1)和直线:y=-1,过定点F与直线相切的动圆圆心为点C. (1)求动点C的轨迹方程; (2)过点F的直线交动点C的轨迹于两点P、Q,交直线于点R,求·的最小值; (3)过点F且与垂直的直线交动点C的轨迹于两点R、T,问四边形PRQT的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 12.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆. (1)求的值; (2)证明:圆与轴必有公共点; (3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由. 13.已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上. (1)求抛物线的方程; (2)已知,求过点及抛物线与轴两个交点的圆的方程; (3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标; 14.如图,是抛物线为上的一点,以S为圆心,r为半径()做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点。 (1)求证:直线CD的斜率为定值; (2)延长DC交x轴负半轴于点E,若EC : ED = 1 : 3,求的值。 15.在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦. (1)求抛物线的准线方程和焦点坐标; (2)若,求证:直线恒过定点; (3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围? 1
显示全部
相似文档