文档详情

模糊神经网络专家系统在动力锂电池组故障诊断中的应用.doc

发布:2017-01-23约9.46千字共7页下载文档
文本预览下载声明
模糊神经网络专家系统在动力锂电池组故障诊断中的应用* 王一卉,姜长泓 (长春工业大学 电气与电子工程学院, 长春 130012) 摘要:动力锂电池故障的产生原因具有一定的复杂性和不确定性。为此,本文提出了一种基于模糊神经网络的故障诊断专家系统,该方法结合了模糊数学,神经网络以及专家系统的优点。用模糊数学可以将症状模糊化以表征故障的隶属度;神经网络具有良好的自学习能力;专家系统具有推理能力强;三者的相互结合,即提高了系统的准确性和可操作性,又满足了对故障诊断智能化,自动化的要求。试验结果表明该方法可以准确的判断出系统的故障,不仅将故障检测的精度提高到,预测误差在之间,而且检测时间大大缩短。提高了动力锂电池的自适应能力,自主学习能力,为动力锂电池故障诊断提出了一种科学高效的新方法。 关键词:模糊; 神经网络 ;动力锂电池; 故障诊断; 专家系统 中图分类号:TM711 文献标识码:B 文章编号:1001-1390(201)00-0000-00 ystem for fault diagnosis in power lithium battery application Wang Yihui,Jiang Changhong School of Electrical Electronic Engineering,Changchun University of Technology,Changchun 130012,ChinaThe cause of power lithium battery failure has a certain complexity and uncertainty.To this end,this paper proposes a fault diagnosis expert system based on fuzzy neural network. This method combines the advantages of fuzzy mathematics,neural network and expert system.Using fuzzy mathematics can be blurred to characterize the membership degree of the fault symptoms;the neural network has good self-learning ability;the expert system has strong reasoning ability;All three together,that is not only to improve the accuracy of the system and operability,but also meet the requirement of the intelligent and automatic diagnosis for faults.The test results show that the method can accurately judge the fault in the system,it not only to increase the accuracy of fault detection to 0.001,control the prediction error at between 1% and 8%, but also shorten the testing time.This method improves the self-adaptive ability of the power lithium batteries,the independent learning ability,and puts forward a new scientific and efficient method for power lithium battery fault diagnosis. fuzzy,neural network,power lithium battery,fault diagnosis,expert system 0 引言 动力锂电池以其能量密度大,使用寿命长,体积小,质量轻,绿色环保等一系列优点,被广泛应用在纯电动汽车上。由于电动汽车在运行中,会出现碰撞,颠簸等不安全因素,使锂电池在运行中电压过高或过低,电流过大或过小,温度过高或过低等,从而引发一定的故障。所以,保证电池的运行安全,及时检测判断出电池的故障是十分有必要的。在判断故障的方法当中,模糊数学[1],卡尔曼滤波[2],人工神经网络[3]都有着广泛应用,但是,由于故障的复杂
显示全部
相似文档