无人驾驶中基于ResNet深度模型的人脸微表情识别算法.pdf
文本预览下载声明
第 1 期 微 处 理 机 No. 1
2023 年 2 月 MICROPROCESSORS Feb. ,2023
无人驾驶中基于 ResNet深度模型的人脸
微表情识别算法 *
蔡 臻,李 锋,魏楚强
(广东交通职业技术学院信息学院,广州510650)
摘 要: 为解决由于人脸微表情存在局部特征少、不同情绪差异性小等特点而带来的特征提取
难度大、表情识别率低等问题,以进一步提高人脸微表情识别精度,提出一种基于ResNet深度模型的
人脸微表情识别算法。算法针对无人驾驶中的行人人脸表情识别场合,主要包括数据预处理及模型构
建,在保证数据集统一性的同时,能够有效提高微表情的识别率。使用FER2013数据集对ResNet-50
模型进行实际验证,并与ResNet-18 的表现加以对比。本算法在实验中获得98.7%的准确率,优于
ResNet-18,充分验证算法模型的有效 。
: ;无人驾驶
关键词 ResNet模型;微表情;人脸识别
DOI:10.3969/j.issn.1002-2279.2023.01.009
中图分类号:TP391.41 文献标识码:A 文章编号:1002-2279(2023)01-0036-04
FacialMicro-Expression RecognitionAlgorithm Basedon
ResNetDepthModelinUnmannedDriving
CAIZhen, LI Feng,WEI Chuqiang
(SchoolofInformation, GuangdongCommunicationPolytechnic, Guangzhou510650, China)
Abstract: Inorder to solvethe problems of difficultfeature extraction andlow expression recognition
rate caused by the lack of local features and small differencesbetween different emotions in facial micro-
expressions, and to further improve the accuracy of facial micro-expressions, a facial micro-expression
recognition algorithm based on ResNet depth model is proposed. The algorithm mainly includes data pre-
processing and model construction,which can effectivelyimprovethe recognitionrate of micro-expressions
while ensuring the uniformity of data sets. The FER2013 data set is used to verify the ResNet-50 model,
and the performance is compared with that of ResNet-18. The accuracy of the algorithm is 98.7% in the
experiment,which isbetterthan ResNet-18,fully verifyingthe effectivenessofthe algorithmmodel.
Keywords: ResNetmodel; Microexpression;
显示全部