改进YOLOv5算法在交警手势识别中的应用.docx
改进YOLOv5算法在交警手势识别中的应用
目录
内容概览................................................3
1.1研究背景与意义.........................................3
1.2国内外研究现状.........................................3
1.3本文主要工作与贡献.....................................5
1.4论文结构安排...........................................6
相关技术概述............................................6
2.1目标检测技术基础.......................................8
2.1.1两阶段与单阶段检测器................................10
2.1.2卷积神经网络原理....................................12
2.2YOLO系列算法详解......................................14
2.2.1YOLOv5模型架构......................................15
2.2.2YOLOv5工作流程......................................19
2.3交警手势识别领域需求..................................19
2.3.1手势类型分析........................................20
2.3.2实时性要求..........................................21
2.3.3环境挑战............................................23
基于YOLOv5的交警手势识别系统设计.......................24
3.1系统整体框架..........................................25
3.2数据集构建与预处理....................................26
3.2.1数据来源与标注规范..................................27
3.2.2图像增强策略........................................28
3.3硬件平台与软件环境....................................29
YOLOv5算法在交警手势识别中的改进策略...................30
4.1模型结构优化..........................................32
4.1.1网络深度与宽度调整..................................33
4.1.2特征融合机制创新....................................35
4.2预测头优化............................................37
4.2.1损失函数改进........................................37
4.2.2非极大值抑制调整....................................39
4.3训练策略革新..........................................40
4.3.1数据增强方法优化....................................44
4.3.2学习率调整方案......................................46
4.3.3迁移学习应用........................................47
改进算法的实验验证与分析...............................49
5.1实验设置..............................................52
5.1.1数据集划分..........................................52
5.1.2评价指标选取........................................53