2024-2025学年云南省大理市中考数学常考点试卷(夺分金卷)附答案详解.docx
云南省大理市中考数学常考点试卷
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题25分)
一、单选题(5小题,每小题2分,共计10分)
1、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()
A. B. C. D.
2、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()
A. B.
C. D.
3、如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为(?????)
A.160o B.120o C.100o D.80o
4、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(?????)
A. B.
C. D.
5、一元二次方程x2-3x+1=0的根的情况是(???????).
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
二、多选题(5小题,每小题3分,共计15分)
1、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是(?????)
A. B.方程有两个相等的实根
C. D.点P到直线AB的最大距离
2、如图,抛物线过点,对称轴是直线.下列结论正确的是(???????)
A.
B.
C.若关于x的方程有实数根,则
D.若和是抛物线上的两点,则当时,
3、如图,AB是的直径,C是上一点,E是△ABC的内心,,延长BE交于点F,连接CF,AF.则下列结论正确的是(???????)
A. B.
C.△AEF是等腰直角三角形 D.若,则
4、二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.下列结论正确的是(???????)
A.
B.
C.若,是抛物线上的两点,则
D.关于x的方程无实数根
5、下列关于圆的叙述正确的有()
A.对角互补的四边形是圆内接四边形
B.圆的切线垂直于圆的半径
C.正多边形中心角的度数等于这个正多边形一个外角的度数
D.过圆外一点所画的圆的两条切线长相等
第Ⅱ卷(非选择题75分)
三、填空题(5小题,每小题3分,共计15分)
1、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.
2、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.
3、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).
4、如图,在中,,,则图中阴影部分的面积是_________.(结果保留)
5、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为___元时,该种植户一天的销售收入最大.
四、解答题(6小题,每小题10分,共计60分)
1、已知m是方程的一个根,试求的值.
2、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
(1)求出抛物线的解析式;
(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
3、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.
4、用适当的方法解方程:
(1)(1-x)2-2(x-1)-35=0;
(2)x2+4x-2=0.
5、解方程(组):
(1)
(2);
(3)x(x-7)=8(7-x).
6、在中,,,将绕点C顺时针旋转一定的角度得到,点A、B的对应点分别是D、E.
(1)