2024-2025学年度江苏省句容市七年级上册 一元一次方程综合测评试卷(详解版).docx
江苏省句容市七年级上册一元一次方程综合测评
考试时间:90分钟;命题人:教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题16分)
一、单选题(8小题,每小题2分,共计16分)
1、已知下列方程:①;②;③;④;⑤;⑥其中一元一次方程的个数是(?????)
A.2 B.3 C.4 D.5
2、已知x=y,则下列等式不一定成立的是()
A.x﹣k=y﹣k B.x+2k=y+2k C. D.kx=ky
3、方程的解是(???????)
A. B. C. D.
4、某超市推出如下优惠方案:
(1)一次性购物不超过100元不享受优惠;
(2)一次性购物超过100元,但不超过300元一律九折;
(3)一次性购物超过300元一律八折;
兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款(???????)
A.288元 B.288元和332元
C.332元 D.288元和316元
5、已知,字母为任意有理数,下列等式不一定成立的是(???????)
A. B. C. D.
6、初一(1)班有学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的多2人.则同时参加这两个小组的人数是(???????)
A.16 B.12 C.10 D.8
7、关于的一元一次方程的解为,则的值为(????????)
A.9 B.8 C.5 D.4
8、定义a*b=ab+a+b,若3*x=27,则x的值是(????)
A.3 B.4 C.6 D.9
第Ⅱ卷(非选择题84分)
二、填空题(7小题,每小题2分,共计14分)
1、如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值是________.
2、用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,求大、小水杯的单价各多少元?设小水杯的单价为x元,则可列方程___.
3、我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)
4、某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使扩大到原来的n()倍,且钢梁保持水平,则弹簧秤读数为_______(N)(用含n,k的代数式表示).
5、为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是________.
6、甲、乙两站的路程为360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米.
(1)两列火车同时开出,相向而行,经过_____小时相遇;
(2)快车先开25分钟,两车相向而行,慢车行驶了______小时两车相遇;
(3)若两车同时开出,同向而行,_______小时后,两相距720千米.
7、如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒2个单位长度,B点运动速度为每秒3个单位长度,当运动___________秒时,点O恰好为线段AB中点.
三、解答题(7小题,每小题10分,共计70分)
1、如图,在数轴上有三个不同的点A,B,C,点C对应有理数10;原点O为线段AB的中点,且线段AB的长度是BC的3倍.
(1)求点A,B所对应的有理数;
(2)动点P从点A出发,以每秒1个单位的速度向右移动,当点P到点A的距离是到点B距离的2倍时,直接写出此时点P所对应的有理数.
2、如图,,为其内部一条射线.
(1)若平分,平分.求的度数;
(2)若,射线从起绕着点顺时针旋转,旋转的速度是每秒钟,设旋转的时间为,试求当时的值.
3、已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.
(1)当t=1时,写出数轴上点B,P所表示的数;
(