广东省汕头市潮阳新世界中英文学校2024-2025学年高三第三次高考模拟考试数学试题含解析.doc
广东省汕头市潮阳新世界中英文学校2024-2025学年高三第三次高考模拟考试数学试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()
A. B. C. D.
2.已知函数,若曲线上始终存在两点,,使得,且的中点在轴上,则正实数的取值范围为()
A. B. C. D.
3.已知a>b>0,c>1,则下列各式成立的是()
A.sina>sinb B.ca>cb C.ac<bc D.
4.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()
A., B.,
C., D.,
5.若不等式对恒成立,则实数的取值范围是()
A. B. C. D.
6.若,则“”是“”的()
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.设变量满足约束条件,则目标函数的最大值是()
A.7 B.5 C.3 D.2
8.若等差数列的前项和为,且,,则的值为().
A.21 B.63 C.13 D.84
9.已知集合,,则=()
A. B. C. D.
10.如果直线与圆相交,则点与圆C的位置关系是()
A.点M在圆C上 B.点M在圆C外
C.点M在圆C内 D.上述三种情况都有可能
11.用一个平面去截正方体,则截面不可能是()
A.正三角形 B.正方形 C.正五边形 D.正六边形
12.已知椭圆+=1(ab0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,,且,则的最小值是______.
14.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.
15.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.
16.已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.
18.(12分)已知点是抛物线的顶点,,是上的两个动点,且.
(1)判断点是否在直线上?说明理由;
(2)设点是△的外接圆的圆心,点到轴的距离为,点,求的最大值.
19.(12分)已知函数,其中.
(1)①求函数的单调区间;
②若满足,且.求证:.
(2)函数.若对任意,都有,求的最大值.
20.(12分)选修4-4:坐标系与参数方程
已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)写出的极坐标方程和的直角坐标方程;
(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.
21.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分别是AC,B1C1的中点.求证:
(1)MN∥平面ABB1A1;
(2)AN⊥A1B.
22.(10分)已知是递增的等比数列,,且、、成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,,求数列的前项和.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.
【详解】
如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.
故选:B
此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.